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ABSTRACT 

 
This paper focuses on the methodology described in CreditRisk+ Technical Document.   Appendix A provides analytical explanations of the techniques used to 
generate the loss distribution arising from a credit portfolio. It is worth mentioning that although the underlying concepts are easy to grasp for those with an 
intermediate mathematical background, the notation used in this paper may bother those who are not fully familiar with it.   
 
First, we concentrate on the concepts surrounding Probability Generating Functions and Convolution, and their application within CreditRisk+. Then, we 
explain, in practical terms, the use of the recurrence relation as used in CreditRisk+. Lastly, we develop an alternative way for calculating credit losses with 
CreditRisk+ via the Fast Fourier Transform (FFT). In order to close the gap between theory and practical implementation we provide VBA, MatLab and R codes 
that present step-by-step examples of practical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
(*) BICA Coop. E.M.Ltda. 25 de Mayo 1774 – Santo tomé –SANTA FE- Argentina - E-mail: mrmelchi@grupobica.com.ar 
The opinions expressed in this paper are those of the author and do not necessarily reflect views shared by BICA Coop. E.M.Ltda. or its staff. 

 
1
 I am grateful to Anabella Boselli, Carina Strada and Luciano Alloatti for their generous contribution. I want to thank to Craig Nelson for helping me to translate this 

paper and the files from Spanish to English. All remaining errors are, of course, my own. 

(c)YieldCurve.com 2004 

 



 

 
CONTENTS 

1. INTRODUCTION......................................................................................................................................................................3 
2. PROBABILITY GENERATING FUNCTION........................................................................................................................3 

2.1 DISCRETE PROBABILITY DISTRIBUTION ...........................................................................................................................3 
EXAMPLE 2.1: ................................................................................................................................................................................... 3 
EXAMPLE 2.2: ................................................................................................................................................................................... 3 
EXAMPLE 2.3: ................................................................................................................................................................................... 3 
EXAMPLE 2.4: ................................................................................................................................................................................... 4 

2.2. CONVOLUTION ......................................................................................................................................................................4 
EXAMPLE 2.5: ................................................................................................................................................................................... 4 

2.2.1. Convolution by Probability Generating Function: .......................................................................................................4 
EXAMPLE 2.6: ................................................................................................................................................................................... 4 
EXAMPLE 2.7: ................................................................................................................................................................................... 4 
EXAMPLE 2.8: ................................................................................................................................................................................... 4 

2.2.2. Convolution by FFT......................................................................................................................................................5 
2.2.2.1 Auxiliary Functions.....................................................................................................................................................5 
2.2.3 FFT Algorithm of convolution .......................................................................................................................................6 
2.2.4 Frequency and Severity of Cumulative Losses...............................................................................................................6 
2.2.5 Algorithm for computing the aggregate loss distribution by FFT .................................................................................6 

3. CREDITRISK+: BASIC MODEL............................................................................................................................................7 
3.1 PROBABILITY GENERATING FUNCTION ..................................................................................................................................7 
OF A POISSON DISTRIBUTION. .......................................................................................................................................................7 

EXAMPLE 3.1: ................................................................................................................................................................................... 7 
EXAMPLE 3.2: ................................................................................................................................................................................... 8 
Using the probability generating function concept, (2.28) and(3.8):............................................................................... 8 
Using the recurrence relations of CreditRisk+, namely (3.9) and (3.10), we obtain: ............................................... 8 
Using algorithm  2.2.3: .......................................................................................................................................................................... 9 
EXAMPLE 3.3: ................................................................................................................................................................................... 9 
Using algorithm  2.2.3: .......................................................................................................................................................................... 9 
Using algorithm  2.2.5: .......................................................................................................................................................................... 9 
Using the recurrence relation of CreditRisk+ (3.9) and (3.10):.............................................................................................................. 9 

4. CREDITRISK+: EXTENSIONS OF THE BASIC MODEL ...............................................................................................10 

4.1 RANDOMNESS OF THE RATE OF DEFAULT: ONE SECTOR.......................................................................................................10 
4.1.1 Distribution of default events.......................................................................................................................................10 

EXAMPLE 4.1: ................................................................................................................................................................................. 10 
Using algorithm  2.2.5: ........................................................................................................................................................................ 11 

4.1.2 Distribution of default losses for a portfolio................................................................................................................12 
EXAMPLE 4.2: ................................................................................................................................................................................. 12 
Using algorithm 2.2.5: ......................................................................................................................................................................... 12 

4.2 SEVERAL SECTORS ...............................................................................................................................................................14 
4.1.2 Loss Distribution using FFT........................................................................................................................................14 

EXAMPLE 4.3 .................................................................................................................................................................................. 15 
Using algorithm  2.2.3: ........................................................................................................................................................................ 15 

5. CREDITRISK+ BY FFT .........................................................................................................................................................16 

EXAMPLE 5.1 .................................................................................................................................................................................. 16 
5.1 BASIC MODEL OF CREDITRISK+: ..........................................................................................................................................17 
5.1.1 BASIC MODEL ALGORITHM BY FFT  ................................................................................................................................17 
5.2 EXTENDED MODEL OF CREDITRISK+: ..................................................................................................................................17 

5.2.1 One Sector ...................................................................................................................................................................17 
5.2.2 Several Sectors.............................................................................................................................................................17 

6. CONCLUSIONS.......................................................................................................................................................................18 
7. REFERENCES.........................................................................................................................................................................18 

(c)YieldCurve.com 2004 2

 



CreditRisk+ by Fast Fourier Transform                   Mario R. Melchiori 
 

1. Introduction 

Many publications related to the credit risk field have 
come out during the last ten years or so. Unsurprisingly, 
the different methodologies used today to measure Value 
at Risk – VaR - of a credit portfolio, such as CreditMetrics 
(JP Morgan, 1997), CreditRisk+ (Credit Suisse Financial 
Products, 1997), PortfolioManager (KMV, 1997) and 
McKinsey´s CreditPortfolioView (Wilson, 1997) were born 
in that period. Subsequent to such publications, the goals 
of the more recent literature were to outline each work’s 
peculiarities2 and to analyze the differences and 
similarities3.  Other literature espoused the expansion of 
their applications4. 
   
Based on credit risk management’s popularity, quite a few 
Internet portals exclusively focused on the subject, while 
many others researched it deeply5, though not in an 
exclusive fashion6. 
In this paper, we focus on the methodology followed in 
the CreditRisk+ Technical Document.  Its appendix A gives 
analytical explanations of the techniques used to generate 
the loss distribution arising from a credit portfolio. It is 
worth mentioning that although the underlying concepts 
are easy to grasp for those with an intermediate 
mathematical knowledge, the notation used in this paper 
may annoy those who are not fully familiar with. 
  
First, we concentrate on the concepts of the probability 
generating function and convolution, and their 
application to CreditRisk+. We then explain in practical 
terms the use of the recurrence relation used by 
CreditRisk+. Lastly, we develop an alternative way to 
calculate CreditRisk+ through the Fast Fourier Transform 
(FFT).   In order to cover the gap between theory and 
practical implementation we provide VBA, MatLab and R 
codes that present, step-by-step, all practical applications 
covered in this paper. 

2. Probability Generating Function7

In this section, we introduce some basic concepts related 
to discrete probability distribution. 
 

2.1 Discrete Probability Distribution 

Let X be a discrete random variable defined on non-
negative integers, 0,1,2.  
The random variable X can be fully described by a 
probability vector: 
 
 

( ) ( ) ( ) ( )Xf 0 , 1 , 2 ,..., ,X X X Xf f f f R⎡ ⎤= ⎣ ⎦ (2.1)

or simply: 
 

[ ]X 0 1 2f , , ,..., ,Rf f f f= (2.2)

 
with .  In this representation, the 

maximum possible value of X cannot exceed R. When R is 
finite, X has infinitely many vector representations of the 
form 

( ) { }xf Prii f X i= = =

 

                                                 
2 Crouhy, Galai & Mark  (1998) 
3 Koyluoglu & Hickman  (1998), Christopher C. Finger (1998), Gordy (2000), 
3 Bügisser, Kurth, Wagner & Wolf (1999) 
5 For examples, see DefaultRisk.com   
6 For examples, see  e-Risk.com
7   Here, we followed almost literally Aggregation of Correlated Portfolio, Models 
and  Algorithms, Shaun S. Wang, section 2, page 851. 

[ ]0 1 2, , ,..., ,0,0,0,...,0Rf f f f ,   (2.3)

 
Where a number of zeros are added to the right. 
 
For a discrete variable  with a probability vector X

[ ]x 0 1 2f , , ,..., ,Rf f f f=  the probability generating function is 

defined by the symbolic series: 
 
 
  ( ) 0 1 2 3

0 1 2 3 ... ,R
X RP t f t f t f t f t f t= + + + + + (2.4) 

  
 
which is also the expected value of Xt . 
 
The variable  may represent: X
 
� The number of obligors and the probability that they 

default or not default during a given period of time, or 
� The  exposure in the obligors and the probability that 

they default or  not default during a given period of time.  
 
EXAMPLE 2.1: 
 
 
If a discrete variable  has the following probabilities: N
 { } { } { }Pr 0 0.50     Pr 2 0.40     Pr 5 0.10N N N= = = = = =

 (2.5)

 
then it can be represented by a vector: 
 
 [ ]0.50,0,0.40,0,0,0.10,0,...,0 ,Nf =  (2.6)

 
and it has a probability generating function: 
 
  ( ) 2 50.50 0.40 0.10NP t t t= + + (2.7)

 
EXAMPLE 2.2: 
 
If a discrete variable  has the following probabilities: K
 

{ } { } { }Pr 1 0.40     Pr 2 0.30     Pr 3 0.30K K K= = = = = =  (2.8)                         

 
then it can be represented by a vector:  
 
 [ ]f 0,0.40,0.30,0.30,0,...,0 ,k =  (2.9)

 
and it has the probability generating function: 
 
  ( ) 2 30.40 0.30 0.30KP t t t t= + + (2.10)

 
EXAMPLE 2.3: 
 
Let’s consider a portfolio  with only one obligor. Suppose 
this obligor has an annual 8% unconditional probability of 
default. An individual obligor may default or not default, thus, 
the number of defaults that may take place in the portfolio  
by the end of the year shall have the following probability 
distribution:  

I

I

 
 , { } { }Pr 0 0.92     Pr 1 0.08I I= = = = (2.11)

 
and it can be represented by the vector: 
 
 [ ]If 0.92,0.08= , (2.12)

 
which has a probability generating function: 
 

(c)YieldCurve.com 2004 

 . ( ) 0 1P t = 0.92t +0.08tI
(2.13)

http://www.defaultrisk.com/
http://www.erisk.com/


 
Formula (2.13) is equivalent to formula (3) of the 
CreditRisk+ Technical Document, although we introduce it 
as a function of t and not , as it appears in the 
document. 

z

 
EXAMPLE 2.4: 
 
We can formulate the previous example in a different way. 
If we define the portfolio value as the event of interest, 
instead of the number of defaults, and considering the 
individual obligor with an exposure value of $10 and a 
recovery value of $0, we will find that at the end of the 
year the portfolio value  shall have the following 
probability distribution: 

P

 
         , { }Pr 0 0.08P = = { }Pr 10 0.92P = = (2.14)

 
which can be represented by the vector: 
 
 [ ]Pf 0.08,0,0,0,0,0,0,0,0,0,0.92= , (2.15)

 
which has the probability generating function: 
 
 . ( ) 0 10.08 0.92PP t t t= + 0 (2.16) 

2.2. Convolution 
Suppose   and  independent discrete random 
variables defined on non-negative integers. 
Let

N K

J N K= + represent the sum of N and . The probability 
distribution of 

K

J  represents the convolution of the 
probability distributions of and and is defined by: N K

 
{ } { } { }

0

Pr Pr Pr ,
j

n

J j N n K j
=

= = = = −∑ n

}

          

  

0,1,2,...,j n=

(2.17)

 
EXAMPLE 2.5: 

 
For the random variable defined by equation (2.5) and (2.8) 
we have:  
 

 { } { } { } {
5

0

Pr 5 Pr 5 Pr Pr 5
n

J N K N n K n
=

= = + = = = = −∑  (2.18)

 
Since many of the terms are zero, we have: 
 
   { } { } { }Pr 5 0 0 Pr 2 Pr 3 0 0 0 0.12.j N K= = + + = = + + + = (2.19)

 
22..22..11..  CCoonnvvoolluuttiioonn  bbyy  PPrroobbaabbiilliittyy  GGeenneerraattiinngg  
FFuunnccttiioonn::  
 
Note that: 
 
  ( ) ( ) ( ). . .N K N K N K

N K N KP t t t t t t P t P t+
+ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ε = Ε = Ε Ε =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(2.20)

 
due to the independence  of and K . In other words, the 
probability generating function of the sum N is the 
product of  and . 

N
K+

( )NP t ( )KP t

 
EXAMPLE 2.6: 

 
In terms of probability generating function for the random 
variable defined by equations (2.5) and (2.8), we have: 

 

( ) ( ) ( ) ( ) ( )2 5 2. 0.5 0.4 0.1 0.4 .3 0.3J N KP t P t P t t t t t t= = + + + + 3 . (2.21)

 
After expansion we obtain: 

 
( ) 2 3 4 5 6 70.20 0.15 0.31 0.12 0.12 0.04 0.03 0.03JP t t t t t t t t t= + + + + + + + 8

.  (2.22)

 
The coefficient jt  gives the probability that J = j.  For 
example: . { }Pr 5 0.12J = =

 
EXAMPLE 2.7: 

 
Let’s consider the portfolio  with two obligors. We assume 
that one obligor has an annual unconditional probability of 
default of 8% and the other has an annual unconditional 
probability of default of 5%.  Thus the number of defaults 
that may take place in the portfolio  by the end of the year 
shall have the following probability distribution:  

I

I

  
 ( ) ( ) ( )0 1 00.92 0.08 0.95 0.05IP t t t t t= + + 1   (2.23)  

 
 ( ) ( )0 10.874 0.122 0.004IP t t t t= + + 2

P

 . (2.24) 

 

Equation (2.24) shall be interpreted as follows: There is a 0.4 
% of probability that both obligors default, a 12.2 % of 
probability that only one obligor defaults, and an 87.4% of 
probability that neither obligors default, after one year. 
 
 
EXAMPLE 2.8: 

 
The above example can be introduced using the portfolio 
value  as the event of interest, instead of using the number 
of defaults; thus, if we assume that the exposure is $10 for 
the first obligor and $ 5 for the second, and further assuming 
a recovery value of $0 in both cases, the portfolio ´s value 
by the end of the year will have the following probability: 

P

 
 ( ) ( ) ( )0 10 00.08 0.92 0.05 0.95PP t t t t t= + + 5  (2.25)  

 
 ( ) ( )0 5 10 150.004 0.076 0.046 0.874PP t t t t t= + + +  (2.26)

 
Once again, the above written a formula, which shall be 
interpreted in the following way. There is a 0.4% of 
probability that the portfolio ´s value is $0 (which means 
that both obligors have defaulted), a 7.6% of probability that 
portfolio ´s value is $5 (that is to say the obligor whose 
exposure was $5 did not default and the other obligor whose 
exposure was $10 did default), a 4.6% of probability that 
portfolio ´s value is $ 10 (which means that the obligor 
whose exposure was 10$ did not default and the one whose 
exposure was 5$ did default), and finally, an 87.4% of 
probability that portfolio ´s value is 15 $, (which is only 
possible if both obligors do not default by year end). 

P

J

P

P

P
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As can be deduced, as long as the number of factors is 
reduced, we get the result of this formula quite easily. After 
multiplying the terms, we can expand the formula in t, and in 
doing so it is necessary to calculate the nth derivative of , 

evaluated at

( )P t

0t = . The result shall then be divided by the nth 
factorial.  This process is equivalent to equation (20) of the 
CreditRisk+ technical document, except for the fact that we 
have assumed a binomial distribution for the event of default. 
Alternatively, CreditRisk+ assumes a Poisson distribution for 



defaults, which allows one to find a simple recursive 
formula that, in turn, permits the calculation of the 
derivatives and factorials already mentioned. To introduce 
another example we now calculate the probability of loss 
suffered in the portfolio whose initial value at $10.  We 
will assume a binomial distribution for the event of 
default. Thus, 
 
the probability generating function is: 
 
 ( ) ( )0 10 00.92 0.08 0.95 0.05t t t+ + 5t . (2.27)   

 
We now calculate the tenth derivative of (2.27) and divide it 
by ten factorial to obtain:  

 
( ) ( )

10
0 10 00.92 0.08 0.95 0.05

10!

d
t t t t

dt
⎛ ⎞ + +⎜ ⎟
⎝ ⎠

5

 . (2.28)

 
The result of which is: 

 
 ( )50.004 3003t +19  , (2.29)

 
and when evaluated at t = 0 yields: 
 
 ( )50.004 3003.0 +19  = 0.076. (2.30)

 
This implies that the probability of suffering a portfolio 
loss of $10 during the year is 7.6%. If we take the case of 
formula (2.26)for t5 we will obtain the same result.  This is 
due to the fact that in formula (2.26) the coefficient of t5 
represents the probability that the portfolio is worth $5, 
whereas the result of formula (2.30) represents the 
probability that a portfolio loses $10. Formulas (2.26) and 
(2.30) are basically two different ways of representing the 
same event. 
 
Another way of arriving at this convolution is via the Fast 
Fourier Transform (FFT), which we will approach later in 
this paper, and which will help us to understand why 
CreditRisk+ uses the Poisson probability distribution 
instead of Binomial probability distribution. 
  
22..22..22..  CCoonnvvoolluuttiioonn  bbyy  FFFFTT  
 
Before getting deeper into this subject, it is worth 
mentioning that there are several useful auxiliary 
functions associated with a distribution function  of a 

random variableY . 

( )f x

 
1. Probability Generating Function   
2. Moment Generating Function  
3. Characteristic Function 
4. Cumulam Generating Function  

 
Given certain conditions, we can change from one 
auxiliary function to another. CreditRisk+ uses function 1, 
Finger8 uses the auxiliary function 2, Gordy9 uses function 
4; and in this paper we use function 3. 

 
22..22..22..11  AAuuxxiilliiaarryy  FFuunnccttiioonnss    
 
The Univariate Case 

                                                 
8 CreditMetrics Monitor Abril 1999 ( Free registration required) 
9 Saddlepoint Approximation of CreditRisk+     Published in  
Journal of Banking and Finance, 26(7), August 2002, pp. 1337-1355. 
 

 
Let  be a non-negative random variable of discrete, 
continuous, or mixed type. Let  be the probability 

(density) function of ,for example: 

X

( )Xf x

X

 ( )
( )

{ }Pr ,       if X is discrete

,       if X is continuous
{

X

X x
X d

F x
dx

f x ==  (2.31) 

 
� The Probability Generating Function of  is defined by: X

 

  ( ) ( ) ( )
( )       if X is discrete,   

      if X is continuous. 
{ X

X
X

X

f x tX
X f x t dx

P t t ∑= Ε =
∫

(2.32)

 
� The Moment Generating Function of  is defined by: X

 
 ( ) ( ) ( )tX t

X XM t e P e= Ε =  (2.33)

 
� The Characteristic Function, also called the Fourier 

Transform of , is defined by: X
 
 ( ) ( ) ( )i i itX t

X Xt e P e Mφ ⎡ ⎤= Ε = =⎣ ⎦ X t , (2.34)

 
where i 1= −  is the imaginary unit. 
 
� The Cumulam Generating Function of  is defined by: X

 
  ( ) ( )log X XK t M t= (2.35) 

 

The Multivariate Case 
 
For a set of random variables ( ) , let  be the 

joint probability (density) function.  For example: 

1,..., kX X
1,..., kX Xf

 

 

( )
{ }

( )

1

1

1

,..., 1

1 1

,..., 1,...,

,...,

Pr ,..., ,     if the   are discrete,  

 ,      if the  are continuous.
...

k

k

k

X X k

k k j

k

x x k j
x x

f x x

X x X x X

F x x X

=

= =

∂
∂ ∂

  

For any subset of { }1, 2,..., kX X X  their (joint) probability 

distribution is called the marginal probability distribution of 
 

1 2, ,..., .
kX X Xf

 
The Generating Function of Joint Probability of  is 

defined as: 

( )1 2, ,..., kX X X

 
  ( ) 1

1,..., 1 1,..., ... ;k

k

X X
X X k kP t t t t⎡ ⎤= Ε ⎣ ⎦

(2.36)

 
The Joint Moment Generating Function of  ( )  is 

defined as: 
1 2, ,..., kX X X

 
 ( ) ( )1 1 1

1 1

...
,..., 1 ,...,,..., ,..., ;k k k

k k

t X t X t t
X X k X XM t t e P e e+ +⎡ ⎤= Ε =⎣ ⎦  (2.37)

 
The Joint Characteristic Function of (  is defined 

as: 

)1 2, ,..., kX X X

 
 ( ) ( ) ( )1 1 1

1 1

i ... i i
,..., 1 ,...,,..., ,...,k k k

k k

t X t X t t
X X k X Xt t e P e eφ + +⎡ ⎤= Ε =⎣ ⎦   (2.38)

 
 The Joint Cumulam Generating Function of ( )  is 

defined as: 
1 2, ,..., kX X X

 
   ( ) (

1 1,..., 1 ,..., 1,..., log ,...,
k kX X k X X kK t t M t t= ) (2.39)

 
Characteristic Function 
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The characteristic function maps a continuous probability 
density function to a complex-valued continuous function, 
while the FFT maps a vector of n values to a vector of n 
values of complex numbers.  
 
The characteristic function is defined as: 

  ( )( ) .itxt f x e dφ
∞

−∞

= ∫ x (2.40)

where i = −1  has the property 2i 1= − . 
 
The characteristic function has one important property: if 

and  are independent, the characteristic function of 
the sum  is the product of the characteristic 
functions of and . Due to this relationship – in terms 
of characteristic functions -, the FFT can also be used to 
perform convolutions. 

N K
N K+

N K

 
In terms of the characteristic function, we have: 

 
( ) ( ) ( ) ( ).it N K itN itK itN itK

N K N Kt e e e t t tφ φ+
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ε = Ε = Ε Ε =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ . tφ  (2.41)

 
as a result of the independence of  N and . K
 
The FFT of the sum of two independent discrete random 
variables is the product of the FFTs of two individual 
variables, on condition that enough zeros are added to 
each individual vector of probability. Note that the FFT is a 
one-to-one mapping from n points to n points, and which 
requires the input and output vectors to be of the same 
length. On the other hand, a longer vector is generally 
required for a discrete representation of the summation 
variable instead of for each component, since the 
summation variable will take on larger values with non-
zero probability. If there is no place in the discrete vector, 
then the tail probabilities for the sum will wrap around and 
reappear at the beginning. Consequently, it is vital to add 
enough zeros to the right of each individual probability 
vector.  
 
In order to speed up the FFT, it is convenient to use a 
probability vector with a length of . This can be 
simply done by adding zeros at the right of probability 
vector. Such condition is vital for perfect functioning, if we 
are to use the Excel Analysis Toolpak add-in to perform 
the FFT. 

2rn =

 
22..22..33  FFFFTT  AAllggoorriitthhmm  ooff  ccoonnvvoolluuttiioonn  
 
If [ ]0 1 1f , ,..., mf f f −=  and [ ]0 1 1g , ,..., kg g g −=  represent two 

probability vectors, then the following process can be used 
to evaluate their convolution: 

 
1. Pad the given vectors  and  with zeroes so that 

each one has a length of . 

f g

n m k≥ +

2. Apply FFT to each vector  and . ( )
~

f FFT f= ( )
~

g FFT g=

 
3. Calculate the product (complex number 

multiplication), element by element of the two 

vectors: . 
~ ~ ~

h f .g=

4. Apply the inverse function of the Fast Fourier 

Transform (IFFT) to  in order to recover the 
probability vector as a convolution of  and g . 

~

h
f

 
In the next section, we describe another method used to 
calculate both the losses and defaults generated by credit 
portfolio using CreditRisk+. 

 
22..22..44  FFrreeqquueennccyy  aanndd  SSeevveerriittyy  ooff  CCuummuullaattiivvee  LLoosssseess  
 
When evaluating the losses originated in insurance portfolios, 
the methodology called frequency/severity is one of the most 
flexible methods. Here the loss frequency average and the 
loss severity average are used to calculate the cumulative 
average expected loss. With the purpose of developing a 
dynamic analysis of underlying risks, it is necessary to know 
not only the average but also the distribution of cumulative 
losses for quantifying loss variability. Apart from estimating 
frequency and severity averages, probability distributions are 
used to describe any possible variation in the number of 
contingencies and uncertainties concerning losses. The 
distribution of cumulative losses combines the effects of the 

frequency/severity of losses. 
 
If applied to a credit portfolio, the concepts are: 
 
Frequency: 
The number of defaults in a portfolio, during a given period of 
time. 
 
Severity: 
The amount, in currency units, of each individual default; that 
is, the loss expressed in currency units, in the event of 
default (Loss Given Default, or LGD). 

 
22..22..55  AAllggoorriitthhmm  ffoorr  ccoommppuuttiinngg  tthhee  aaggggrreeggaattee  lloossss  
ddiissttrriibbuuttiioonn  bbyy  FFFFTT  
 
Cumulative losses are represented as the sum , of a random 
number , of individual defaulted loans and/or 
bonds ( ) . 

Z
N

1 2, ,..., NX X X

Considering the characteristic function, the previous model 
may be represented by: 

 
 

( ) ( ) ( )

( ) ( )( )

1 2 ... |Nit Z it X X X
Z N

N

N X N X

t e e N

t P t

φ

φ φ

+ + +⎡ ⎤⎡ ⎤ ⎡ ⎤= Ε = Ε Ε⎣ ⎦ ⎣ ⎦ =⎣ ⎦
⎡ ⎤= Ε =⎣ ⎦

 (2.42)

 
where  is the probability generating function of . This 

relationship suggests the following FFT algorithm for 
calculating the cumulative loss distribution in terms of the 
characteristic function. 

NP N

 
Choose  for some integer r ;  is the number of points 
desired in the distribution of cumulative losses. In other 
words, the cumulative loss distribution shall have negligible 
probability outside the range [

2rn = n

]0,n (even though this range 

must be assigned before determining the exact distribution of 
cumulative losses, and knowing its average and standard 
variance can be very useful when choosing ) .n
  
1. Transform the severity probability distribution from a 

continuous one to a discrete one. To achieve this, we need 
to select a span that allows the partitioning of the portfolio 
into exposure bands in such a way that each band is 
comprised of the obligors whose exposure correspond to 
the band type.  If [ ]0 1 1, ,..., nf f f −f =  represents the severity 

vector, then the terms  in such vector shall be 

calculated considering that they represent the quotient of 
the expected number of defaults within the band, and the 
expected number of defaults in the portfolio.  

if

 

(c)YieldCurve.com 2004 6

2. Add zeros to the severity probability vector so that it is of 
length . We denote the discrete severity probability 
vector of length  as follows: 

n
n



 
  . ( ) ( ) ( )Xf 0 , 1 ,..., 1X X xf f f n⎡ ⎤= −⎣ ⎦

 
3. Apply FFT to the probability severity 

vector: . ( )
~

X Xf FFT f=

 
4. Apply the probability generating function of the 

frequency, element by element, to the FFT of the 

severity vector: . 
~ ~

Z Xf fNP
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
5. Apply IFFT to recover the distribution of the 

cumulative losses. 

    
~

Z Zf IFFT f⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
As an example of the above-mentioned algorithm, let 
severity be the degenerate distribution $1 with certainty, 
and let frequency be distributed Poisson. Thus, the 
distribution of cumulative losses is Poisson as well. After 
choosing the number of points, , the discrete severity 
distribution of the losses is a vector of n terms  

. If the number of points is large enough it 

can be easily checked that the FFT algorithm reproduces 
the Poisson

n

(0,1,0,0,...,0)

10 distribution.  ( )1teµ − 11 is the probability 
generating function of a Poisson distribution. The following 
table shows the development of the algorithm previously 

stated using the example just discussed:  

 
~

f  
n  f  

Real Imaginary 

~
f 1

IFFT e
µ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
~
f 1

e
µ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠  

0 - 1.000000 - 1.000000 0.951229 

1 1.000000 0.707107 (0.707107) 0.984846 0.047561 

2 - - (1.000000) 0.950041 0.001189 

7 - (0.707107) (0.707107) 0.917612 0.000020 

4 - (1.000000) - 0.904837 0.000000 

5 - (0.707107) 0.707107 0.917612 0.000000 

6 - - 1.000000 0.950041 - 

7 - 0.707107 0.707107 0.984846 - 

Table I    

3. CreditRisk+: Basic Model  
In the basic model CreditRisk+ assumes that defaults in a 
given credit portfolio have a Poisson distribution, provided 
that: 
 
• for a loan, the probability of default in a given period, 

say 1 month, is the same for any other month; 
� for a large number of obligors, the probability of 

default by any particular obligor is small, and the 
number of defaults that occur in any given period is 
independent of the number of defaults that occur in 
any other period. 

 
CreditRisk+ assumes as necessary conditions: 1) a 
Poisson distribution instead of a Binomial one, 2) a small 
magnitude for the default rate, and 3) a large number of 
obligors. The other conditions, such as independence and 
no conditionality, are necessary no matter what the 
distribution chosen for them. 
 

                                                 

n

10  See formula (3.1) or verification.  f
11 See formula (3.8). 

It is necessary to identify the number of obligors as with any 
other portfolio containing a finite number of obligors. The 
Poisson distribution, which specifies the probability of  
defaults, can be shown to be an approximation of the 
Binomial distribution. However, if the number of obligors is 
large enough, the difference between the number of defaults 
determined by Poisson distribution and a Binomial distribution 
becomes negligible. 
But the question remains: Why does CreditRisk+ choose a 
Poisson distribution? The answer shall be found in (3.4), since 
it has a simple resolution if we choose Poisson for calculating 
losses for the entire portfolio. This, in turn, allows one to 
calculate derivatives, which is nearly impossible to do in the 
case of a portfolio comprised by a very large number of 
obligors.  

3.1 Probability Generating Function of a Poisson 
distribution. 

 
The Poisson distribution mass, that is, the probability that N is 
equal to n, is given by: 

 
 ( ) defaults    for 0,1,2,...,

!

ne
P n n

n

µµ −

= =   (3.1)   

 
EXAMPLE 3.1: 

 
The annual number of defaults is a random variable, with a 
mean and variance equal to µ , that is to say, the Poisson 
distribution is determined by only one parameter, µ . 

For instance, if we assume that µ = 3, then the probability of 

no defaults in the next year is: 
 

 ( )
0 33

0 default 0.05 5%
0!
e

P
−

= = = ,   (3.2)

 
and the probability of 3 exactly defaults is: 

 
 ( )

3 33
3 defaults 0.224 22.4%

3!
e

P
−

= = =  .  (3.3)

 
 
The probability generating function is equal to: 

 

 
( ) ( ) ( ) ( )

( )

1 2

0

Pr 0 Pr 1 Pr 2 ...

Pr
!

N

n
n n

n

P t N N t N t

e
N n t t

n

µµ −∞

=

= = + = + = +

+ = = ∑
  (3.4) 

 
Given the following Maclaurin infinite series expansion, 

 
 

2 3 4

0

1 ....
2! 3! 4! !

n
u

n

u u u u
e u

n

∞

=

= + + + + + = ∑ ,  (3.5)  

 
and if we rewrite (3.4) in the following way, 

 
 ( )

0 !

n

n

t
e

n
µ µ∞

−

=
∑   (3.6) 

 
and further assuming (3.5), we obtain 
 ( )

0 !

n

ut

n

t
e

n

µ∞

=

=∑    (3.7) 

which implies: 
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   ( )1tute e eµµ −− =  (3.8)  



 
This is the probability generating function of a Poisson 
distribution.  If we derive it manually as we’ve done, we 

arrive at formula (7) of CreditRisk
+. Following formula 

(2.28) in this paper, and formula (20) of the CreditRisk
+ 

Technical Document, we can calculate the derivatives, 
although there is a more efficient way (also used by 

CreditRisk
+), to find out the terms of the series. This is: 

 

 ( ) 10

m

j
jG e

µ
=

−∑
=   (3.9)  

 
For calculating the probability generating function of a 
Poisson distribution for n>0 , assuming the random 
variable X represents the number of obligors and their 
probability of default during a given period of time, the 
formula is 

 

 ( ) ( )1 1

m

j
jG n G n

n

µ
== −

∑
   (3.10)

                          
 

In order to calculate the probability generating function of 
a Poisson distribution for n>0 assuming the random 
variable X represents the exposed amount of an obligor 
and the probability of default for all obligors during a 
given period of time, we get: 
 
 ( ) (

: 0j

j

j v

G n G n j
n

ε

≤

= ∑ )−  (3.11)

      
As an aide to understanding the material, we introduce 
several examples in the following sections, focusing on the 
four methods of solution.  

 
EXAMPLE 3.2: 

 
Let’s consider a given portfolio  consisting of two 
obligors. We’ll assume that one of the obligors has an 
unconditional probability of default of 8% annually, while 
the other obligor has a 5% annual default rate, and that 
the probability of default of one obligor is independent of 

the other obligor. Then, how shall the probability of the 
number of defaults in the portfolio be distributed? 

P

 
Using the probability generating function concept, (2.28) 
and(3.8): 
 
  ( ) ( ) ( )0.05 1 0.08 10 t tG e e− −=   (3.12) 

 
   ( ) ( ) ( )0.05 0 1 0.08 0 10G e e− −=  (3.13) 

 
  (3.14) ( )0 0.8780954G =

 ( ) ( ) ( )0.05 1 0.08 11 t tG e e
t

− −∂
=

∂
  (3.15) 

 
  ( ) 0.131 0.1141524 tG e=      (3.16) 

 
  ( ) 0.13 x 01 0.1141524G e=    (3.17)

 
  ( )  (3.18)1 0.1141524G =

 ( )
( ) ( )

2
0.05 1 0.08 1

2
2!

t te e
tG

− −∂⎛ ⎞
⎜ ⎟∂⎝ ⎠=    (3.19)  

 
   ( ) 0.132 0.0074199 tG e=  (3.20) 

 
   ( ) 0.13 x 02 0.0074199G e= (3.21)  

 
   ( )2 0.0074199G =  (3.22) 

 

 ( )
( ) ( )

3
0.05 1 0.08 1

3
3!

t te e
tG

− −∂⎛ ⎞
⎜ ⎟∂⎝ ⎠=    (3.23)

 
   ( ) 0.133 0.0003215 tG e=  (3.24) 

 
   ( ) 0.13 x 03 0.0003215G e=  (3.25) 

 
  ( )3 0.0003215G = (3.26)  

 

 ( )
( ) ( )

4
0.05 1 0.08 1

4
4!

t te e
tG

− −∂⎛ ⎞
⎜ ⎟∂⎝ ⎠=     (3.27)

 
   ( ) 0.134 0.0000104 tG e=  (3.28) 

 
  ( ) 0.13 x 04 0.0000104G e=   (3.29) 

 
 ( )4 0.0000104G =    (3.30) 

 

 ( )
( ) ( )

5
0.05 1 0.08 1

5
5!

t te e
tG

− −∂⎛ ⎞
⎜ ⎟∂⎝ ⎠=    (3.31) 

 
  ( ) 0.135 0.0000003 tG e=  (3.32)  

 
  ( ) 0.13 x 05 0.0000003G e=  (3.33)  

 
   ( )5 0.0000003G =  (3.34) 

 
Using the recurrence relations of CreditRisk+, namely (3.9) 
and (3.10), we obtain: 

 
  (3.35) ( ) 0.05 0.08 0.130 0.8780954G e e− − −= = =

 

 ( ) 0.05 0.08
1 0.8780954 0.8780954

1 1

0.0439048 0.0702476 0.1141524

G ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

+ =

   (3.36) 

 

 ( ) 0.05 0.08
2 0.1141524 0.1141524

2 2

0.0028538 0.0045661 0.0074199

G ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

+ =

  (3.37)  

 

 ( ) 0.05 0.08
3 0.0074199 0.0074199

3 3

0.0001237 0.0001978 0.0003215

G ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

+ =

  (3.38)  
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( ) 0.05 0.08
4 0.0003215 0.0003215

4 4

0.0000040 0.0000064 0.0000104

G ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

+ =

=
 (3.39)

 

 ( ) 0.05 0.08
5 0.0000104 0.0000104

5 5

0.0000001 0.0000002 0.0000003

G ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

= + =

  (3.40)  

 
 
Using algorithm  2.2.3:  
 
 

~

f  

~

g  
~

h  n  f  g  

Real Imaginar
y 

Real Imaginar
y 

Real Imaginar
y 

( )G n  

0 0.923116 0.95123 1.00000  1.00000  1.00000  0.8780954 

1 0.073849 0.04756 0.97528 0.05523 0.98485 0.03483 0.95858 0.08837 0.1141524 

2 0.002954 0.00119 0.92016 0.07377 0.95004 0.04754 0.87069 0.11383 0.0074199 

3 0.000079 0.00002 0.87095 0.04932 0.91761 0.03246 0.79759 0.07353 0.0003215 

4 0.000002 0.00000 0.85214  0.90484  0.77105  0.0000104 

5 0.000000 0.00000 0.87095 -0.04932 0.91761 -0.03246 0.79759 -0.07353 0.0000003 

6 0.000000 0.00000 0.92016 -0.07377 0.95004 -0.04754 0.87069 -0.11383 0.0000000 

7 0.000000 0.00000 0.97528 -0.05523 0.98485 -0.03483 0.95858 -0.08837 0.0000000 

Table II 

 
 
As the table shows, Poisson distribution is only an 
approximation. Indeed, it seems hardly possible to assign 
a probability to the occurrence of the event of 2 defaults 
in the portfolio when there is only one obligor12. As to the 
final outcome for the portfolio default distribution, it is 
hardly possible to have defaults greater than 2 when the 
portfolio consists of only 2 obligors.  The true distribution 
for the number of defaults in the portfolio is shown in (2.24)

, provided that the binomial distribution is assumed. 
 
In the next example we use (3.9) and (3.11) for calculating 
the loss distribution of the portfolio. 

 
EXAMPLE 3.3: 

 
The previous example may be reintroduced using as the 
event of interest the portfolio loss instead of the number 
of defaults. Hence, if we consider that the first obligor has 
an exposure of $1, and the second one an exposure of $2, 

and for both obligors the recovery value is $0: How shall 
the loss probability be distributed for the entire portfolio?  
 
 
Using algorithm  2.2.3:  
 
 
 
 
 
 
 
 

                                                 
12 Note the vector in the  case of  f

2
0.002954=f

 
~

f  

~

g  
~

h  
n  f  g  

Real Imaginary Real Imaginary Real Imaginary 

( )G n  

0 0.951229 0.923116 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.878095 

1 0.047561 0.000000 0.996019 
-

0.019060 0.975278 
-

0.055229 0.970343 
-

0.073598 0.043905 

2 0.001189 0.073849 0.984846 
-

0.034834 0.920164 
-

0.073771 0.903650 
-

0.104706 0.071345 

3 0.000020 0.000000 0.968571 
-

0.044774 0.870951 
-

0.049321 0.841370 
-

0.086767 0.003531 

4 0.000000 0.002954 0.950041 
-

0.047542 
0.852144 0.000000 0.809571 

-
0.040512 

0.002898 

5 0.000000 0.000000 0.932206 
-

0.043093 0.870951 0.049321 0.814031 0.008446 0.000142 

6 0.000000 0.000079 0.917612 
-

0.032456 0.920164 0.073771 0.846748 0.037828 0.000078 

7 0.000000 0.000000 0.908122 
-

0.017378 0.975278 0.055229 0.886631 0.033206 0.000004 

8 0.000000 0.000002 0.904837 0.000000 1.000000 0.000000 0.904837 0.000000 0.000002 

9 0.000000 0.000000 0.908122 0.017378 0.975278 
-

0.055229 0.886631 
-

0.033206 0.000000 

10 0.000000 0.000000 0.917612 0.032456 0.920164 
-

0.073771 
0.846748 

-
0.037828 

0.000000 

11 0.000000 0.000000 0.932206 0.043093 0.870951 
-

0.049321 0.814031 
-

0.008446 0.000000 

12 0.000000 0.000000 0.950041 0.047542 0.852144 0.000000 0.809571 0.040512 0.000000 

13 0.000000 0.000000 0.968571 0.044774 0.870951 0.049321 0.841370 0.086767 0.000000 

14 0.000000 0.000000 0.984846 0.034834 0.920164 0.073771 0.903650 0.104706 0.000000 

15 0.000000 0.000000 0.996019 0.019060 0.975278 0.055229 0.970343 0.073598 0.000000 

Table III 

 
 
Using algorithm  2.2.5:  
 

 

  
  Table IV 

 
Using the recurrence relation of CreditRisk+ (3.9) and (3.10): 

 

  (3.41) ( ) 0.05 0.08 0.130 0.878095G e e− − −= = =

 
  ( ) 0.05 1

1 0.878095 0.043905
1

G
×⎛ ⎞= =⎜ ⎟

⎝ ⎠
  (3.42)  

 
( ) 0.05 1 0.08 2
2 0.043905 0.878095 0.071345

2 2
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

  (3.43) 

 

(c)YieldCurve.com 2004 9

~

f  

2 ~

1

f 1i
ie

µ
=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑

 n  f  

Real Imaginary Real Imaginary 

( )G n  

0 0.000000 1.000000 0.000000 1.000000 0.000000 0.878095 

1 0.384615 0.790481 -0.582329 0.970343 -0.073598 0.043905 

2 0.615385 0.271964 -0.887349 0.903650 -0.104706 0.071345 

3 0.000000 -0.287957 -0.790481 0.841370 -0.086767 0.003531 

4 0.000000 -0.615385 -0.384615 0.809571 -0.040512 0.002898 

5 0.000000 -0.582329 0.079804 0.814031 0.008446 0.000142 

6 0.000000 -0.271964 0.343420 0.846748 0.037828 0.000078 

7 0.000000 0.079804 0.287957 0.886631 0.033206 0.000004 

8 0.000000 0.230769 0.000000 0.904837 0.000000 0.000002 

9 0.000000 0.079804 -0.287957 0.886631 -0.033206 0.000000 

10 0.000000 -0.271964 -0.343420 0.846748 -0.037828 0.000000 

11 0.000000 -0.582329 -0.079804 0.814031 -0.008446 0.000000 

12 0.000000 -0.615385 0.384615 0.809571 0.040512 0.000000 

13 0.000000 -0.287957 0.790481 0.841370 0.086767 0.000000 

14 0.000000 0.271964 0.887349 0.903650 0.104706 0.000000 

15 0.000000 0.790481 0.582329 0.970343 0.073598 0.000000 



( ) 0.05 1 0.08 2
3 0.071345 0.043905 0.003531

3 3
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.44)

 
( ) 0.05 1 0.08 2
4 0.003531 0.071345 0.002898

4 4
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.45)

 
( ) 0.05 1 0.08 2
5 0.002898 0.003531 0.000142

5 5
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.46)

 
( ) 0.05 1 0.08 2
6 0.000142 0.002898 0.000078

6 6
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.47)

 
( ) 0.05 1 0.08 2
7 0.000078 0.000142 0.000004

7 7
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.48)

 
( ) 0.05 1 0.08 2
8 0.000004 0.000078 0.000002

8 8
G

× ×⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.49)

4. CreditRisk+: Extensions of the basic 
model 
4.1 Randomness of the rate of Default: One sector 

If the basic model which represents the ideal conditions of 
the credit market, we shall expect that both the mean 
rate of defaults and their variance over time be equal 
to µ . Unfortunately, research does not confirm this 

assumption. Let’s consider the following information13: In 
the case of those obligors placed into category B, 
historical data shows a mean of default per year of 7.42 
obligors. If such obligors were distributed according to 
Poisson, we would expect a variance of 7.42, and 
consequently, a standard deviation of 2.72 obligors per 
year. Instead, obligors show a standard deviation of 5.1, 
which represents a variance of 26.01. Thus, under these 
circumstances, the Poisson distribution underestimates 
the real probability of default. This should not be 
surprising as it is expected that the mean default rate 
changes over time, being low when the economy is 
expanding and high when it is in recession. 
 
In addition, in many situations, individual risks are 
correlated since they are subject to the same drivers of 
default, or are influenced by changes in a common 
underlying economic and legal environment. 
 
One way of modeling situations where the individual risks 
are subject to the same default influences is to use a 
secondary mixing distribution. The aggregate losses of the 
credit portfolio can then be realized by following a two-
stage process: Firstly, the external parameter controlling 
default is drawn from a distribution function, which in the 
case of CreditRisk+ would be the Gamma distribution. 
Secondly, the severity of each external parameter is 
obtained as a realization from a conditional distribution 
function, conditioned on the realization of the external 
parameter drawn in the first step, and which is assumed 
to be Poisson distributed by CreditRisk+. This model, 
named Mixed Poisson where the parameter µ  of 

equation (3.1) is Gamma distributed with parameters α  
and β  [i.e. (Gamma , )α β ] , may also be understood as a 

Negative Binomial Distribution with parameters µ  

and σ [i.e. (NB , )µ σ ].   

 

                                                 
13 Source: Carty and Lieberman (1996). 

44..11..11  DDiissttrriibbuuttiioonn  ooff  ddeeffaauulltt  eevveennttss    
 
The Negative Binomial Distribution,  ,  has a 

probability function: 

( )NB , ,  , 0µ σ µ σ >

 

{ } ( )
( )

1
Pr ,      0,1,2,....

! 1 1

n

n

n
p N n n

n

αα β
α β β

Γ + ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

 

     (4.1)

 
where: 

  ( ) ( )1

0

x

x

e x dxαα
∞

−−

=

Γ = ∫ (4.2) 

 
 

2 2

2             y            
µ σα β

µσ
= =

.

 (4.3)

 
and has the probability generating function: 

   ( ) ( )1 1NP t t
α

β
−

⎡ ⎤= − −⎣ ⎦
  (4.4)

  
Thus, in order to calculate the number of defaults in the 
entire portfolio we may use different methods, as is discussed 
in the following examples.  
 
EXAMPLE 4.1: 

 
Let’s consider a portfolio consisting of two obligors. We will 
assume that the annual mean default rate is 8% for one of 
them, and 5% for the other, and that their annual standard 
deviations are 4% and 2.5%, respectively. Then, how shall 
the probability of the number of defaults be distributed in the 
entire portfolio?  
 
 
Using the Negative Binomial probability distribution 
 
   (4.5)  0.08 0.05 0.13µ = + =

 
  0.04 0.025 0.065σ = + =   (4.6) 

 
 

2

2 4
µα
σ

= =  (4.7)

 
 

2

0.0325
σβ
µ

= =  (4.8) 

 

 
( ) ( )

( )

( ) ( )

4 04 0 1 0.0325
0

4 0! 1 0.0325 1 0.0325

6
0.879913 1 0.879913

6

G
Γ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

=

 (4.9)

 

 

( ) ( )
( )

( ) ( )

4 14 1 1 0.0325
1

4 1! 1 0.0325 1 0.0325

24
0.879913  0.031477 0.110788

6

G
Γ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

=

 (4.10)  

 

 

( ) ( )
( )

( ) ( )

4 24 2 1 0.0325
2

4 2! 1 0.0325 1 0.0325

120
0.879913 0.0009908 0.008718

12

G
Γ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

=

 (4.11) 
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( ) ( )
( )

( ) ( )

4 34 3 1 0.0325
3

4 3! 1 0.0325 1 0.0325

720
0.879913 0.0000312 0.000549

36

G
Γ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

=

 (4.12) 

 

 

( ) ( )
( )

( ) ( )

4 44 4 1 0.0325
4

4 4! 1 0.0325 1 0.0325

5040
0.879913 0.000001 0.000030

144

G
Γ + ⎛ ⎞ ⎛= =⎜ ⎟ ⎜Γ + +⎝ ⎠ ⎝

=

⎞
⎟
⎠  (4.13) 

 

 

( ) ( )
( )

( ) ( )

4 54 5 1 0.0325
5

4 5! 1 0.0325 1 0.0325

40320
0.879913 0.00000003  0.000002

720

G
Γ + ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠

=

 (4.14)

 
Using algorithm  2.2.5:  
 

~

f  ( )1 1t
α

β
−

⎡ ⎤− −⎣ ⎦  
n  f  

Real Imaginary Real Imaginary 
( )G n  

0 0 1.000000 - 1.000000 - 0.879913 

1 1.000000 0.707107 (0.707107) 0.957833 (0.087444) 0.110788 

2 0 - (1.000000) 0.871225 (0.110241) 0.008718 

3 0 (0.707107) (0.707107) 0.801933 (0.070008) 0.000549 

4 0 (1.000000) - 0.777323 - 0.000030 

5 0 (0.707107) 0.707107 0.801933 0.070008 0.000002 

6 0 - 1.000000 0.871225 0.110241 0.000000 

7 0 0.707107 0.707107 0.957833 0.087444 0.000000 

Table V 
 
Using formulae (55) CreditRisk+ Technical Document 
 
 ( ) 1

F       where 
1 1

p
t

pt

α
β

p
β

⎛ ⎞ ⎛−
= ⎜ ⎟ ⎜− +⎝ ⎠ ⎝

⎞
= ⎟

⎠
    (4.15)

 
 
 

 
( )

4
41 0.031477

F 0 =0.968523 =0.879913 
1 0.031477 .

0.0325
where 

1 0.0325

t

p

−⎛ ⎞= ⎜ ⎟−⎝ ⎠
⎛ ⎞= ⎜ ⎟+⎝ ⎠

    (4.16) 

 
 

 
( )

( )

4

0

42

5

1 0.031477
1 0.031477 .

1
1!

3.4621278.10  17310639
0.110788

156250000500000000 -157385.

t

d
dt t

F

t

=

−⎛ ⎞
⎜ ⎟−⎝ ⎠

= =

= =

 (4.17)

 
 
 

 
( )

( )

2 4

0

50

67 8

1 0.031477
1 0.031477 .

F 2 =
2!

2.724434633.10  

1.57385 .10 5.10 0.017436
0.008718

2! 2

t

d
dt t

t

=

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

−
= =

    (4.18)

 
 

 

 

( )

( )

3 4

0

74

711 9

1 0.031477
1 0.031477 .

F 3 =
3!

3.293069574.10  

10 3.1477 .10 0.003293
0.000549

3! 6

t

d
dt t

t

=

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

−
= =

 (4.19)

 
 

  

( )

( )

4 4

0

84

89 11

1 0.031477
1 0.031477 .

F 4 =
4!

7.255916008.10  

3.1477 .10 10 0.000725
0.000030

4! 24

t

d
dt t

t

=

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

−
= =

 (4.20)

 
 

 
( )

( )

5 4

0

95

911 9

1 0.031477
1 0.031477 .

F 5 =
5!

1.827155604.10  

10 3.1477 .10 0.000183
0.000002

5! 120

t

d
dt t

t

=

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

−
= =

    (4.21)

 
 
Using the following Panjer14 recursive algorithm:  
 
 { } { }Pr Pr 1 ,          1,2,3,....

b
N k a N k k

k
⎛ ⎞= = + = − =⎜ ⎟
⎝ ⎠

  (4.22)

where: 
  

1
a

β
β

=
+

    (4.23) 

 
 

( )1

1
b

α β
β

−
=

+
  (4.24) 

 
in order to calculate α  we use (4.7); (4.8) is used to calculate 

β  , and (4.15) is used for calculating  . { }Pr 0N =

 
 

{ }
4

4

1 0.031476998
Pr 0

1 0.031476998 .0

0.968523 0.879913

N
−⎛ ⎞= = =⎜ −⎝

=

⎟
⎠   (4.25)

  

{ } 0.094431
Pr 1 0.031477 0.879913 0.110788

1
N ⎛ ⎞= = + =⎜ ⎟

⎝ ⎠
 (4.26)

 
{ } 0.094431

Pr 2 0.031477 0.110788 0.008718
2

N ⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

 (4.27)

 
{ } 0.094431

Pr 3 0.031477 0.008718 0.000549
3

N ⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

 (4.28)

 
{ } 0.094431

Pr 4 0.031477 0.000549 0.000030
4

N ⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

 (4.29)

 
{ } 0.094431

Pr 5 0.031477 0.000030 0.000002
5

N ⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

  (4.30)
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14 Panjer, H. H., “Recursive Evaluation of a Family of Compound Distributions,” ASTIN 
Bulletin 12, 1981, pp. 22–26. 



 
44..11..22  DDiissttrriibbuuttiioonn  ooff  ddeeffaauulltt  lloosssseess  ffoorr  aa  ppoorrttffoolliioo  
  
As stated before in CreditRisk

+ 
the number of default 

events in the portfolio results from the summing of 
Negative Binomial distributions. However, this is not the 
case when calculating the distribution of default losses. 
Therefore, we cannot work with the Negative Binomial 
distribution, nor can we use the Algorithm 2.2.3. If we 
want to use the Algorithm 2.2.5 we will need to derive a 
new probability generating function, which relates to the 
fact that loss events are not independent, but rather 
correlated to one another as the loss events all depend on 
some external factor. This assumption implies that other 
methods can be used for calculating the default losses.  

 
The Gamma Distribution, , has the 

probability function: 

( )Gamma , ,  , 0α β α β >

 ( ) ( )
1

,            0

x

x e
f x x

α β

αβ α

−
−

=
Γ

>     (4.31)

where ( )αΓ  was already defined in (4.2). 
 
(4.31) has the following Moment Generating Function: 

 
    ( ) ( )1 ,tX

XM t e t
αβ −⎡ ⎤= Ε = −⎣ ⎦

    (4.32)

 
 
Let’s consider n  discrete random variables . 

Assume that there exists a random variable ,  such that: 
1 2, ,..., nN N N

Θ

 
 ( ) ( )~ Poisson ,           1,2,..., ,j jN jθ θµΘ = = n   (4.33)

 
where the  variable Θ has the probability density function 

( )π θ and a moment generating function . For any value 

of

MΘ

θΘ = , the variables ( )jN θ 15 are independent and 

distributed ( )Poisson jθµ , with a joint conditional probability 

generating function according to formulas (2.36) and (3.8) of: 
 
 ( ) ( ) ( )11

1

1 ... 1
1 1,..., ,..., ... nn

n

t tN N
n nN NP t t t t eθ µ µθ θ ⎡ ⎤− + + −⎣ ⎦

Θ
⎡ ⎤= Ε Θ = =⎣ ⎦     (4.34)

 
However, are unconditionally correlated, as they 

all depend on the same random parameter Θ . The joint 
unconditional probability generating function for 

 is, according to 

1,..., nN N

1,..., nN N (2.36): 
 
  ( ) 1

1,..., 1 1,..., ... n

n

N N
N N n nP t t t tΘ

⎡ ⎤⎡ ⎤= Ε Ε Θ⎣ ⎦⎣ ⎦
 ,  (4.35)

 
and according to (2.32) , (3.8), and (4.34): 
 
  ( ) ( ) ( ) ( )1

1

1 ... 1
,..., 1

0

,..., n

n

t t
N N nP t t e dθ µ µ π θ θ

∞
⎡ ⎤− + + −⎣ ⎦= ∫  (4.36)

 
and according to (2.33): 

                                                 
15 The value of the variable jN depends on the value of the variable θ . 

( ) ( ) ( ) ( ) ( ) ( )( )1

1

1 ... 1
,..., 1 1

0

,..., 1 ... 1n

n

t t
N N n nP t t e d M t tθ µ µ π θ θ µ µ

∞
⎡ ⎤− + + −⎣ ⎦

Θ= = − +∫ + −     

   (4.37)

 
as in CreditRisk

+ ( )π θ  is equal to (4.31), then, for (4.32): 
 
  

( ) ( ) ( )( )
( ) ( )

1,..., 1 1

1

,..., 1 ... 1

1 1 ... 1

nN N n n

n

P t t M t t

t t
α

µ µ

βµ βµ

Θ

−

= − + + − =

⎡ ⎤− − + + −⎣ ⎦
 (4.38)

 
  ( ) ( )

1,..., 1
1

,..., 1 1
n

n

N N n j
j

P t t t
α

µ β
−

=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑    (4.39)

 
EXAMPLE 4.2: 

 
Example 4.1 may be introduced using as the event of interest 
the loss in portfolio value, instead of using the number of 
defaults. Thus, considering that the first obligor has an 
exposure of $1 and the second one $2, and the recovery 
value for both obligors $0 in the event of default, how shall 
the loss probability be distributed in the portfolio?  
 
Using algorithm 2.2.5:  
 

~

f  ( )
1

1 f 1
n

j
j

α

µ β
−

=

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
∑

n  f  

Real Imaginary Real Imaginary 

( )G n  

0 - 1.000000 - 1.000000 - 0.879913 

1 0.615385 0.999959 (0.008496) 0.999994 (0.001104) 0.068177 

2 0.384615 0.999838 (0.016991) 0.999976 (0.002209) 0.045912 

3 - 0.999635 (0.025484) 0.999946 (0.003313) 0.004255 

4 - 0.999351 (0.033974) 0.999903 (0.004416) 0.001534 

5 - 0.998987 (0.042462) 0.999849 (0.005519) 0.000161 

6 - 0.998541 (0.050945) 0.999783 (0.006621) 0.000042 

7 - 0.998014 (0.059423) 0.999705 (0.007722) 0.000005 

         Table VIV 

 
 
Using the recurrence relation formulae (72) 
 CreditRisk+ Technical Document 
 
Let’s calculate the coefficients of polynomials A and B by 
means of the following formulae: 

 
   (4.40)( ) 0 1 ... r

rA z a a z a z= + + +

 
  ( ) 1

1

j
m

v
j

j

p
A z z

α ε
µ

−

=

= ∑  (4.41)

 
    (4.42)( ) 0 1 ... s

sB z b b z b z= + + +

 
  ( )

1

1 j
m

v
j

j

p
B z u z

µ =

= − ∑  (4.43)

 
In our example: 
 2m =   (4.44)
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   (4.45)1 0.08u =



 
   (4.46)2 0.05u =

 
   (4.47)1 2 0.08 0.05 0.13µ µ µ= + = + =

 
   (4.48)1 2 0.04 0.025 0.065σ σ σ= + = + =

 
  

2 2

2 2

0.13
4

0.065
µα
σ

= = =  (4.49)

 
 

2 20.065
0.0325

0.13
σβ
µ

= = =   (4.50)

 
  

( )
0.0325

0.03147699757
1 1 0.0325

p
β

β
= = =

+ +
 (4.51)

 
       (4.52)1 1v =

 
  2 2v =  (4.53)

 
  1 1  (4.54)1 0.08vε µ= =

 
   (4.55)2 2 2 0.10vε µ= =

 
 ( ) ( 00.03147699757  4

0.08 0.10 ,
0.13

A z z z
×

= + )1
  (4.56)

 
    (4.57)( ) 0.07748184019+0.09685230024A z z=

 
  ( ) ( )1 20.03147699757

1 0.08
0.13

B z z z= − + 0.05  (4.58)

 
   (4.59)( ) 2 1- 0.01937046004  - 0.01210653753B z z z=

 
   (4.60)1r =

 
   2s =   (4.61)

 
Now, we have the coefficients of each polynomial: 

 
   (4.62)0 10.07748184019, 0.09685230024a a= =

 
   (4.63)0 1 21,    0.01937046004,   0.01210653753b b b= = − = −

 
Having calculated the coefficients, it is possible to use 
formula (72) of the CreditRisk+ technical document to 
calculate the loss distribution from . Consequently, it is 
necessary to calculate the loss for  first by using 

formula (59) of the CreditRisk

1A

0A
+ 

technical document or 
formula (4.15) of this paper: 
 
 
 

( )
( )

( )
( )

4

0

4

1 1 0.03147699757

1 0 1 0.03147699757 0

0.96852300 0.879913

p
A

p

α
⎡ ⎤ ⎡− −

= =⎢ ⎥ ⎢
− × − ×⎢ ⎥ ⎢⎣ ⎦ ⎣

= =

⎤
⎥
⎥⎦   (4.64)

 
 

( ) ( )
( )( )min , min 1, 1

1 1
0 00

1
1

r n s n

n i n i j n j
i j

A a A b n
b n

− −

+ − +
= =

⎛
= −⎜⎜ ⎟+ ⎝

∑ ∑ j A −

⎞
− ⎟

⎠
    (4.65)

 
   (4.66)( ) ( )1 0.07748184 0.879913 0.068177A = × =

( )
( )
( )
0.07748184 0.068177+0.0968523 0.8799131

2 ,
2 0.01937046 0.068177

⎡ ⎤× × −
= ⎢ ⎥

− ×⎢ ⎥⎣ ⎦
A  

   (4.67) 

 
   (4.68)( )2  0.045912A =

 
(

 
)

( )
045912+0.0968523 0.068177

0.045912  0.01210653753 0.068177

0.07748184 0.1
(3)

3 0.01937046 2
A

⎡ ⎤× × −
= ⎢ ⎥

× − ×− ×⎢ ⎥⎣ ⎦
   

  (4.69)

 
 

   (4.70)( )3 0.004255A =

 
 

( )
( )
( )
0.07748184 0.004255+0.0968523 0.0459121

4
4 0.01937046 3 0.004255  0.01210653753 2 0.045912

A
⎡ ⎤× × −

= ⎢ ⎥
− × × − × ×⎢ ⎥⎣ ⎦

 

   (4.71)

 
   (4.72)(4) 0.001534A =

 
( )

( )
( )
0.07748184 0.001534+0.0968523 0.0042551

5
5 0.01937046 4 0.001534  0.01210653753 3 0.004255

A
⎡ ⎤× × −

= ⎢ ⎥
− × × − × ×⎢ ⎥⎣ ⎦

   (4.73)

 
   (4.74)( )5 0.000161A =

 
( )

( )
( )
0.07748184 0.000161+0.0968523 0.0015341

6
6 0.01937046 5 0.000161  0.01210653753 4 0.001534

A
⎡ ⎤× × −

= ⎢ ⎥
− × × − × ×⎢ ⎥⎣ ⎦

  (4.75)

 
   (4.76)( )6 0.000042A =

 
( )

( )
( )
0.07748184 0.000042+0.0968523 0.0001611

7
7 0.01937046 6 0.000042  0.01210653753 5 0.000161

A
⎡ ⎤× × −

= ⎢ ⎥
− × × − × ×⎢ ⎥⎣ ⎦

   (4.77)

 
    (4.78)( )7 0.000005A =

 
 

 
Using the Panger16 recursive algorithm  
 
This algorithm was already discussed when we calculated the 
default distribution, but it can also be used (with some minor 

adjustments) to assess the loss distribution.17

Suppose that the severity distribution  is defined for 

0,1,2... so that in this example: 

( )Xf x

 

                                                 
16 Work quoted  in  14

(c)YieldCurve.com 2004 13

17 The same algorithm may be used for the assessment of the distribution of defaults and 
losses, considering the basic model  of CreditRisk+.  The only change takes place in 

formulas (4.23) and (4.24), where: 0a = and b µ= ;  and consequently, the 
algorithm (4.85) is reduced to algorithm (4.89). 



 ( ) 1 0.08
1 0.61538462

0.13Xf
µ
µ

= = =   (4.79)

 
 ( ) 2 0.05

2 0.38461538
0.13Xf

µ
µ

= = =  (4.80)

Suppose that the frequency distribution is a member of 

the (  class and that complies with formula ),a b (4.22). Note 

that both the Poisson distribution and the Negative 
Binomial distribution are included in this class. For 
example, in the case of the Poisson distribution ( )Poisson µ , 

 and b0a = µ= . For the Negative Binomial distribution, 
i.e. ( ) ,Negative Binomial µ σ , , ,  and a b α β  are calculated using 
(4.23),(4.24), (4.7) and (4.8) respectively. In our previous 

example, these formulas result in the following values: 
 
 

2

2 4
µα
σ

= =   (4.81)

 
  

2

0.0325
σβ
µ

= =   (4.82)

 
 

0.0325
0.031476998

1 1.0325
a

β
β

= = =
+

  (4.83)

 
 

( ) ( )1 4 1 0.0325
0.09443099

1 1 0.0325
b

α β
β

− − ×
= = =

+ +
  (4.84)

 
Panjer showed that the loss distribution  could be 

recursively evaluated using: 

( )Sf x

 

 ( ) ( ) ( )
1

x

S X S
y

by
f x a f y f x y

x=

⎡ ⎤⎛ ⎞= + −⎢ ⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ⎥   (4.85)

 
The starting value of the recursive algorithm is: 

 
  

( ) ( )( )
4

4

1 1 0.031476998
0 0

1 1 0.031476998 .0

0.968523 =0.879913

S N X

a
f P f

at

α
− −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

=
 (4.86)

 
Now we can calculate the other values of ( )Sf x 18: 
 

 
( ) ( )1 0.031476998 0.09443099 0.61538462 0.879913

0.068177
Sf = + × × =

   (4.87)

 
 

( ) 0.09443099
2 0.031476998 0.61538462 0.879913

2

0.09443099 2
0.031476998 0.38461538 0.068177 =0.045912

2

Sf
⎡⎛ ⎞= + × × +⎢⎜ ⎟
⎝ ⎠⎣

⎡ ×⎛ ⎞+ + × ×⎢⎜ ⎟
⎝ ⎠⎣

⎤
⎥
⎦

⎤
⎥
⎦

  (4.88)

 
In the case of X~ ( )Poisson µ , (4.85) is reduced to: 
 
 ( ) ( ) ( )

1

,             1,2,...,
x

S X S
y

f x yf y f x y x
x
µ

=

= − =∑   (4.89)

                                                 
18 Here, we are only calculating the values for  0,1, 2.=X

 

4.2 Several Sectors 
Once the assumptions for the randomness of the default rate 
have been made, CreditRisk

+ next focuses on the 
decomposition of the default rate by sectors.  In practical 

terms:19

 

 
1

 
m

ik k
k

aµ µ
=

= ∑ ε   (4.90)

 
where kε  is a Gamma distributed random variable, and which 

represents the k  factor, with a mean equal to one and a 
standard deviation represented by , and with being m  the 

total number of factors. The sum of the weights of the factors 
 in the determination of the mean shall be 1: 

ks

ika

 
 

   (4.91)
1

1       for all 
m

ik
k

a
=

=∑ i

ika

                                                

 
When approaching the calculation of the loss distribution 
using this framework for several sectors we could use Monte 

Carlo simulation20. Although this approach adapts to any 
probability distribution, both for modeling the uncertainty in 
the factor and uncertainty in the loss distribution, it is 
generally an inefficient means for computation due its 
computing resource requirements. Another methodology is 
the one used by Finger21, and is similar to the approach that 
will be taken later in this paper. It combines Monte Carlo 
Simulation for modeling factor uncertainty (using standard 
normal distribution), and the FFT for modeling the loss 
distribution in a portfolio (assuming a Binomial distribution in 
this case). Despite the fact that this methodology chooses the 
probability distributions for us, which can be an advantage, 
the problems with Monte Carlo simulation persist. Last, but 
not least, CreditRisk+ uses the Gamma and the Poisson 
distributions as mentioned in the previous sections. This is a 
clear advantage as these distributions allow us to maintain a 
recurrence relation, which is quite effective in computing 
terms. Here the disadvantage is that there is no convincing 
research22 which proves the uncertainty surrounding the 

default probability follows a Gamma distribution. 
 
We shall now introduce the Value at Risk calculation for a 
credit portfolio using the distributions assumed by 

CreditRisk
+, but instead using the FFT. 

 
44..11..22  LLoossss  DDiissttrriibbuuttiioonn  uussiinngg  FFFFTT  
 
Each sector is considered a portfolio by itself, and completely 
independent from the other sectors. The portfolio is thus 
partitioned into as many sub portfolios as there are sectors. 
Each sector portfolio will be assigned a weight  

corresponding to its idiosyncratic risk23, and which is in 
accordance with the concept proposed by William F. Sharpe; 
that is to say, the portion of the default rate that is not 
accounted for by systemic factors, sectors, etc., but by the 
financial structure of the obligor or itself. In this sub portfolio 

 
19 Reconciling CreditRisk+ and CreditMetrics by Li,Song and Ong. 
20 A comparative anatomy of credit risk models by Michael Gordy. 
21 See note 8
22 See note 9

(c)YieldCurve.com 2004 14

23 It can also be called Idiosincratic Risk or own Risk. 



(following the CreditRisk
+ 

Technical Document section A 

12.3) the losses are distributed Poisson. In the other sub 
portfolios, however, losses are distributed according to the 
extended model. 
 
Once the loss distribution for each sub portfolio is 
calculated, it is then possible to calculate the loss 
distribution for the entire portfolio using algorithm 2.2.3, 
as each sub portfolio is independent from the others. This 
is clearly shown in the following example:  
 
EXAMPLE 4.3 24

 
Let’s continue with our real world containing only two 
obligors. One of them is an issuer with a bond priced at 
$1, having a default probability of 16% and a standard 
deviation of 8%. The other one is an obligor with an 
outstanding loan of $2, with a default probability of 10% 
and a standard deviation of 5%. In both cases, the 
recovery value at default is $0. We have seen this kind of 
data in previous examples; however, in this case it is 
necessary to add up the weights of each sector when 
determining the mean default of each obligor. The 
following table introduces the required information: 

 
 

Obligor / Issuer Sector A Sector B 

1 0.50 0.50 

2 0.50 0.50 

            Table VII 

 
 

 
First, we shall partition the portfolio by the number of 
sectors chosen. Thus, we find out in our example that we 
have two new portfolios, namely: 
 
 

 
Portfolio A 

Obligor/ 
Issuer 

 
Exposure $ µ  σ  ika   ikaµ µ=   ikaσ σ=  

1 1 0.16 0.08 0.50 0.08 0.04 
2 2 0.10 0.10 0.50 0.05 0.025 

Table VIII 

 
 
 

Portfolio B 
Obligor/ 
Issuer 

 
Exposure $ µ  σ  ika   ikaµ µ=   ikaσ σ=  

1 1 0.16 0.08 0.50 0.08 0.04 
2 2 0.10 0.10 0.50 0.05 0.025 

Table IX 

 
 
We next calculate the loss distribution of each new 
portfolio by means of the algorithm 2.2.3. Formula (72) 

of the CreditRisk
+ technical document may be used to 

calculate the loss distribution of the entire portfolio, as will 
be discussed later.  As for the values in this example, both 
distributions happen to be equal. The calculations to be 
carried out for their determination are also equal to the 
ones described in previous sections. 
 
 
                                                 
24 The values in this example were chosen in such a way that calculations made in 
the prevIous examples may be used in this one. 

Loss Distribution 

Portfolio A Portfolio B 

0.879913 0.879913 

0.068177 0.068177 

0.045912 0.045912 

0.004255 0.004255 

0.001534 0.001534 

0.000161 0.000161 

0.000042 0.000042 

0.000005 0.000005 

          Table X 

 
Let’s now use algorithm 2.2.3 for determining the loss 
distribution for the whole portfolio: 

 
Using algorithm  2.2.3:  
 
 

~

f  

~

g  
~

h  n ( )G nf  g  

Real Imaginary Real Imaginary Real Imaginary 

0 0.879913 0.879913 1.000000 - 1.000000 - 1.000000 - 0.774247 

1 0.068177 0.068177 0.976897 (0.064200) 0.976897 (0.064200) 0.950206 (0.125434) 0.119980 

2 0.045912 0.045912 0.923470 (0.096971) 0.923470 (0.096971) 0.843393 (0.179099) 0.085446 

3 0.004255 0.004255 0.869783 (0.092263) 0.869783 (0.092263) 0.748010 (0.160497) 0.013748 

4 0.001534 0.001534 0.835494 (0.064079) 0.835494 (0.064079) 0.693944 (0.107075) 0.005387 

5 0.000161 0.000161 0.825171 (0.030341) 0.825171 (0.030341) 0.679986 (0.050074) 0.000883 

6 0.000042 0.000042 0.833291 (0.005230) 0.833291 (0.005230) 0.694346 (0.008716) 0.000254 

7 0.000005 0.000005 0.847798 0.003857 0.847798 0.003857 0.718746 0.006539 0.000042 

8 0.000001 0.000001 0.854804 - 0.854804 - 0.730690 - 0.000010 

9 0.000000 0.000000 0.847798 (0.003857) 0.847798 (0.003857) 0.718746 (0.006539) 0.000002 

10 0.000000 0.000000 0.833291 0.005230 0.833291 0.005230 0.694346 0.008716 0.000000 

11 0.000000 0.000000 0.825171 0.030341 0.825171 0.030341 0.679986 0.050074 0.000000 

12 0.000000 0.000000 0.835494 0.064079 0.835494 0.064079 0.693944 0.107075 0.000000 

13 - - 0.869783 0.092263 0.869783 0.092263 0.748010 0.160497 0.000000 

14 - - 0.923470 0.096971 0.923470 0.096971 0.843393 0.179099 0.000000 

15 - - 0.976897 0.064200 0.976897 0.064200 0.950206 0.125434 - 

Table XI 

 
 
Using the recurrence relation formulae (72) of the  
CreditRisk+ Technical Document 
  
As the algorithm was already explained in the previous 
section, here we only focus on the sectors and the calculation 
of the three first values of for each. Once again, the values 
used in this example make the calculation easier.  The 
following formulas calculate the probability generating 

function of 0 as a product of (4.64): 
 
   (4.92)0 0.879913 0.879913 0.774247A = × =

 
In order to evaluate the polynomials zA and zB  we proceed as 

follows: 
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( )
( )

( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

1 2
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1 2
1 1211 1 2 2

1 11 2
1 2

1 21 2

1 11 2

1 1

j j

j j

m m
v v

j j
j j

m m
v v

j j
j j

p p
z z

A z

B z p p
u z u z

α α
ε ε

µ µ

µ µ

− −

= =

= =

= +
− −

∑ ∑

∑ ∑
  (4.93)

 
in our example: 
 

 
( )( )

( ) ( )( )1 2
1 2

1 1211 1 2 2

1 11 2

j

m m
v v

j j
j j

p p
z z

α α
ε ε

µ µ
− −

= =

=∑ ∑ j   (4.94)

 
  

( ) ( )( )
( ) ( )( )1 21 2

1 21 2

1 11 2

1 1j

m m
v v

j
j j

p p
u z u z

µ µ= =

− = −∑ ∑ j

j  (4.95)

 
therefore: 

 
( )
( )

1

1

1

2

1

j

j

m
v

j
j

m
v

j
j

p
z

A z
pB z z

α ε
µ

µ
µ

−

=

=

⎛ ⎞
×⎜ ⎟

⎝ ⎠=
−

∑

∑
  (4.96)

For (4.57): 
 
 
 ( ) ( )0.07748184019+0.09685230024 2

0.1549636803 0.1937046004

A z z

z

= ×

+

=  (4.97)

 
For (4.59): 
 
    (4.98)( ) 2 1- 0.01937046004  - 0.01210653753B z z z=

 
   (4.99)0 10.1549636803, 0.1937046004a a= =

 
   (4.100)0 1 21,    0.01937046004,   0.01210653753b b b= = − = −

 
 
   (4.101)( ) ( )1 0.1549636803 0.774247 0.119980A = × =

 
( ) ( ) (1
2 0.15496 0.11998+0.19370 0.7742 0.01937 0.11998

2
A ⎡ ⎤= × × − − ×⎣ ⎦)

   (4.102)

 
   (4.103) 2 0.085446A =

 
 

5. CreditRisk+ by FFT 
In this section, we introduce a fully developed example for 
calculating the Value at Risk of a given credit portfolio. 
Likewise, and with the aim of bridging the gap between 
theory and computerized application, we introduce the 
examples using MatLab, R and VBA.  Before we proceed, it 
is vital to review some of the basic concepts used by 

CreditRisk
+
, namely: 

 
� Exposure:  

Exposure is defined as the net loss suffered by the 
creditor if his counterparty fails to pay.  In other words, it 
is the expected recovery amount at default. So, in order 
to calculate the LGD (Loss Given Default) it is necessary 
to know beforehand the recovery amount. 
 
� Bands: 

The amounts into which a portfolio is subdivided. Each band is 
considered an independent portfolio. 

 
EXAMPLE 5.1 25

 
Suppose the bank holds a portfolio of loans and bonds across 
500 different obligors, with exposures ranging between 

$50,000 and $1 million: 
 

Notation 

Obligor 
 
Exposure 
 
Probability of Default 
 
Expected Losses 
 

A  

AL  

AP  

 x A A AL Pλ =  

 
In the following table, we introduce the first six obligors: 

 
Obligor 

A  

Exposure 

AL  
Exposure in 
$100.000 

Exposure in 
$100.000 

jv  

Band 

j  

1 150.000 1.5 2 2 
2 460.000 4.6 5 5 
3 435.000 4.35 5 5 
4 370.000 3.7 4 4 
5 190.000 1.9 2 2 
6 480.000 4.8 5 5 

 
The exposure unit . Each band  with 

 has a mean ordinary exposure valuev j

$100.000L = ,  1,2,...,j j m=

10m = . $100.000j = ×

 
In CreditRisk+ each band is considered an independent 
portfolio of loans and/or bonds. Thus: 

 
 

Notation 

Ordinary exposure in band  by units of  j L

Expected loss in band  by units of  j L

Expected number of defaults in band  j

jv  

jε  

jµ  

 
Then, by definition, we get: 

 

 j j jvε µ= ×   (5.1)

Whence: 
 

j
j

jv

ε
µ =   (5.2)

Indicated by Aε  , the expected loss for obligor  in units of , 

for example, is: 

A L

 

 A
A L

λ
ε =   (5.3)

Then, the annual expected loss in band , jj ε , expressed in 

units of L , is simply the sum of the expected loss Aε   for all 

obligors that belong to band .  For instance: j

 
 

: A j

j A
A v v

ε ε
=

= ∑   (5.4) 

From (5.2) it follows that the expected number of annual 
defaults in band  is:  j

  
 

: :A j A j

j A
j

A v v A v v

A

j j Av v

ε
v

ε ε
µ

= =

= = =∑ ∑   (5.5)

                                                 
25 This same example was been introduced in the work quoted in note 2
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The following table illustrates the possible outcomes when 
performing the calculations: 

 
Band  j Number of 

obligors jε  jµ  

1 30 1.5 1.5 
2 40 8 4 
3 50 6 2 
4 70 25.2 6.3 
5 100 35 7 
6 60 14.4 2.4 
7 50 38.5 5.5 
8 40 19.2 2.4 
9 40 25.2 2.8 
10 20 4 0.4 

5.1 Basic Model of CreditRisk+: 

5.1.1 Basic Model Algorithm by FFT   

Having fleshed out the algorithm introduced in section 
2.2.3, we can now describe the calculations for the loss 
distribution of the whole portfolio using FFT as per the 
following instructions: 
 

1. We choose dimension  of the probability vector  
, being especially mindful of the remarks 

mentioned in the last three paragraphs of section 
2.2.3

n
f

26 
2. We build a probability vector for each band j 27, 

such that: 

 ( ) defaults    
!

for 0,1,2,...,2   y   1,2,...,

jn
j

r

e
P n

n
n j

µµ −

=

= = m

   (5.6)

3. We derive the loss distribution vector in the 
portfolio by means of the following formula: 

 
    (5.7)( )

1

IFFT FFT f
m

j
j =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∏

 
At first glance, this algorithm looks somehow different 
than the one introduced in section 2.2.3.  However, it is 
quite simple to explain the differences.  In algorithm 
2.2.3, we assigned a vector for each obligor (i.e. f  
and ). Here, following the same criteria, we shall use as 

many vectors as there are obligors in band j, and 
recognizing that the probability of default for a particular 
band is the same for all the obligors contained in that 

band, we have

g

nº of obligors in band 
j

j

µ
. 

 
It is possible to simplify the calculation using a single 
probability vector, computing the FFT of such vector and 
afterwards, using the power of complex numbers to raise 
the vector up to an exponent equal to the number of 
obligors that comprise the band. Simplifications, however, 
do not stop here. It turns out that when using algorithm 
2.2.3 it is also possible to delete said power if using the 
expected number of defaults in band , jj µ , instead of the 

probability of default . AP

                                                 
26 In our example, the portfolio is 2.630 units of L and the expected loss 177; the 
unexpected loss is hardly higher than 1024, which is to say 210. This is a suitable 
value for n, then. 
27 Although we asume a Poisson distribuition for defaults, as in CreditRisk+, it is 
also possible to choose a binomial distribution.  

5.2 Extended Model of CreditRisk+:  
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5.2.1.1 Extended Model Algorithm, One Sector by FFT 
 
 
As mentioned in section 4, in the real world the mean rate of 
defaults, as well as the variance of defaults, changes over 
time. Consequently, the previous algorithm may 
underestimate the credit risk of the portfolio. In order to solve 

this problem, CreditRisk
+ introduces an alternative to the 

basic model, using Poisson to develop the process of default, 
but assuming that the mean rate is stochastic with mean  

and standard deviation
AP

APσ .  To model this uncertainty, 

CreditRisk
+
 adopts the Gamma distribution, and assumes a 

mean of one and a standard deviation equal to . In our 
example, , so let us now calculate the loss distribution 
for the whole portfolio using the 

s

0.50s =

algorithm 2.2.5:

 
1. Calculate the parameters α  , β  and s: 
 

 AP

A

s
P

σ
=

28                

2

2

1
                         =

1
s

s
α β=

   (5.8)

 
2. We build a severity vector, such that:  
 

 

( )

0

f           for 1,2,3,...,j
m

i
i

j j
µ

µ
=

= =

∑
m

  (5.9)

 
3. We calculate the FFT of  said vector: 

 
   (5.10) ( )

~

f =FFT f

 
4. Apply the probability generating function, element by 

element, to the FFT of the severity vector:  

 
 

~ ~

Z

1

f 1 f 1
m

j
j

α

µ β
−

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑   (5.11) 

 
5. Apply the IFFT to recover the distribution of 

Cumulative losses:  

  
~

Z Zf =IFFT f⎛ ⎞
⎜ ⎟
⎝ ⎠

  (5.12) 

When tends to zero the result from the prior algorithm 
matches the result of algorithm 5.1.1, so  both can be used 

for calculating the loss distribution  in the basic CreditRisk

s

+ 

model.  Moreover, this last feature shall be vital when the 
random rate of default depends upon factors external to the 
obligor, as we shall see in the next section.  
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28 In order to delve deeply into this subject, we suggest the paper already quoted in note 19 
page 8, where from the following reference  is quoted: “Strictly speaking, this means that 
CreditRisk+ requires that the ratio  

 AP

AP
σ
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shall be the same for all debtors asociated with the same sector”. 



In this case (as already discussed in section 4), it is 
necessary to create additional sector allocations for each 
obligor as the below table shows: 

 
 
Band 

 j
Nº of 

Obligors jε  jµ  
Own 
Risk 

Sector 
A 

Sector 
B Total 

1 30 1.5 1.5 50% 25% 25% 100% 
2 40 8 4 50% 25% 25% 100% 
3 50 6 2 50% 25% 25% 100% 
4 70 25.2 6.3 50% 25% 25% 100% 
5 100 35 7 50% 50% 0% 100% 
6 60 14.4 2.4 50% 50% 0% 100% 
7 50 38.5 5.5 50% 50% 0% 100% 
8 40 19.2 2.4 50% 50% 0% 100% 
9 40 25.2 2.8 50% 50% 0% 100% 
10 20 4 0.4 50% 50% 0% 100% 

 
 
Here we have added up the percentage participations of 
the various sectors involved in determining the stochastic 
default rate.  With the aim of developing a complete 
example, we have also incorporated a “special” sector 
called “own risk”29 (following William F. Sharpe’s criteria), 
which represents the portion of the rate of default that is 
not accounted for by systematic movements of the 
sectors, but by the particular financial structure of the 
issuer or obligor. Before developing this algorithm, it is 
worth mentioning that each sector is assumed to be an 
independent portfolio, and is in keeping with the 

CreditRisk
+
 criteria. Thus, the portfolio in this example can 

be broken down into three sub portfolios of which one is 
detailed in the following table: 
 

 
Sub-Portfolio 1 

Band 

 j Nº of Obligors  Own Riskjε ×  jµ  

1 30 0.75 0.75 
2 40 4 2 
3 50 3 1 
4 70 12.6 3.15 
5 100 17.5 3.5 
6 60 7.2 1.2 
7 50 19.25 2.75 
8 40 9.6 1.2 
9 40 12.6 1.4 
10 20 2 0.2 

 
 
If part of the default rate can be explained by the 
idiosyncratic risk of the obligors in the portfolio, then 
following steps are to be taken to calculate the loss 
distribution for the whole portfolio: 
 
 

5.2.2.1 Algorithm extended model several sectors 
 by FFT  
 

1. Use algorithm 5.2.1.1 as many times as there 
are sub portfolios. Let s be a value very close to 
zero30 when calculating the loss distribution of 
the sub portfolio’s idiosyncratic risk, and use a 
value greater than zero31 for the remaining 
sectors.  From this step we obtain as many loss 
distribution vectors as there are sub portfolios. 

 
2. Apply algorithm 2.2.3 in order to recover the 

probability vector as a convolution of the loss 
distribution vectors obtained in the prior step. 

                                                 
29 It is also referred to as idiosyncratic or specific risk.  

30 APσ
=0.0001 gets correct results 

31 We use s=0.50 because CreditRisk+ makes use of that value. 

 

6. Conclusions 

 
We have introduced an alternative way of calculating credit 

Value at Risk using CreditRisk
+. This alternative, which 

resorts to the Fast Fourier Transform  (FFT), may be used not 
only for supporting the calculations of the original 
implementation of CreditRisk+ (following Gordy32’s 
suggestions), but also for generally calculating the loss 
distribution of any credit portfolio. Moreover, the 
methodology developed in this paper does not limit its 

application to CreditRisk
+, as it can be in conjunction with 

Monte Carlo Simulation for modeling credit risk, as suggested 

by Finger33. 
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