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In this primer we consider the zero-coupon or spot interest rate and the forward rate. We 
also look at the yield curve. Investors consider a bond yield and the general market yield 
curve when undertaking analysis to determine if the bond is worth buying; this is a form 
of what is known as relative value analysis. All investors will have a specific risk/reward 
profile that they are comfortable with, and a bond’s yield relative to its perceived risk will 
influence the decision to buy (or sell) it.  
 
We consider the different types of yield curve, before considering a specific curve, the 
zero-coupon or spot yield curve. Yield curve construction itself requires some formidable 
mathematics and is outside the scope of this book; we consider here the basic techniques 
only. Interested readers who wish to study the topic further may wish to refer to the 
author’s book Analysing and Interpreting the Yield Curve.  
 
 
B. THE YIELD CURVE 
 
We have already considered the main measure of return associated with holding bonds, 
the yield to maturity or redemption yield. Much of the analysis and pricing activity that 
takes place in the bond markets revolves around the yield curve. The yield curve 
describes the relationship between a particular redemption yield and a bond’s maturity. 
Plotting the yields of bonds along the term structure will give us our yield curve. It is 
important that only bonds from the same class of issuer or with the same degree of 
liquidity be used when plotting the yield curve; for example a curve may be constructed 
for gilts or for AA-rated sterling Eurobonds, but not a mixture of both.  
 
In this section we will consider the yield to maturity yield curve as well as other types of 
yield curve that may be constructed. Later in this chapter we will consider how to derive 
spot and forward yields from a current redemption yield curve. 
 
 
C. Yield to maturity yield curve 
 
The most commonly occurring yield curve is the yield to maturity yield curve. The 
equation used to calculate the yield to maturity was shown in Chapter 1. The curve itself 
is constructed by plotting the yield to maturity against the term to maturity for a group of 
bonds of the same class. Three different examples are shown at Figure 2.1. Bonds used in 
constructing the curve will only rarely have an exact number of whole years to 
redemption; however it is often common to see yields plotted against whole years on the 
x-axis. Figure 2.2 shows the Bloomberg page IYC for four government yield curves as at 
2 December 2005; these are the US, UK, German and Italian sovereign bond yield 
curves.  
 



 

From figure 2.2 note the yield spread differential between German and Italian bonds. 
Although both the bonds are denominated in euros and, according to the European 
Central Bank (ECB) are viewed as equivalent for collateral purposes (implying identical 
credit quality), the higher yield for Italian government bonds proves that the market 
views them as higher credit risk compared to German government bonds.  
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Fig 2.1 Yield to maturity yield curves 
 
 
Figure 2.2 Bloomberg page IYC showing three government bond yield curves as at 2 
December 2005 
© Bloomberg L.P. Used with permission. Visit www.bloomberg.com  
 
The main weakness of the yield to maturity yield curve stems from the un-real world 
nature of the assumptions behind the yield calculation. This includes the assumption of a 
constant rate for coupons during the bond’s life at the redemption yield level. Since 
market rates will fluctuate over time, it will not be possible to achieve this (a feature 
known as reinvestment risk). Only zero-coupon bondholders avoid reinvestment risk as 
no coupon is paid during the life of a zero-coupon bond. Nevertheless the yield to 
maturity curve is the most commonly encountered in markets.  
 
For the reasons we have discussed the market often uses other types of yield curve for 
analysis when the yield to maturity yield curve is deemed unsuitable. 
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C. The par yield curve 
 
The par yield curve is not usually encountered in secondary market trading, however it is 
often constructed for use by corporate financiers and others in the new issues or primary 
market. The par yield curve plots yield to maturity against term to maturity for current 
bonds trading at par. The par yield is therefore equal to the coupon rate for bonds priced 
at par or near to par, as the yield to maturity for bonds priced exactly at par is equal to the 
coupon rate. Those involved in the primary market will use a par yield curve to determine 
the required coupon for a new bond that is to be issued at par. 
 
As an example consider for instance that par yields on one-year, two-year and three-year 
bonds are 5 per cent, 5.25 per cent and 5.75 per cent respectively. This implies that a new 
two-year bond would require a coupon of 5.25 per cent if it were to be issued at par; for a 
three-year bond with annual coupons trading at par, the following equality would be true 
: 
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This demonstrates that the yield to maturity and the coupon are identical when a bond is 
priced in the market at par. 
 
The par yield curve can be derived directly from bond yields when bonds are trading at or 
near par. If bonds in the market are trading substantially away from par then the resulting 
curve will be distorted. It is then necessary to derive it by iteration from the spot yield 
curve. 
 
 
C. The zero-coupon (or spot) yield curve 
 
The zero-coupon (or spot) yield curve plots zero-coupon yields (or spot yields) against 
term to maturity. In the first instance if there is a liquid zero-coupon bond market we can 
plot the yields from these bonds if we wish to construct this curve. However it is not 
necessary to have a set of zero-coupon bonds in order to construct this curve, as we can 
derive it from a coupon or par yield curve; in fact in many markets where no zero-coupon 
bonds are traded, a spot yield curve is derived from the conventional yield to maturity 
yield curve. This of course would be a theoretical zero-coupon (spot) yield curve, as 
opposed to the market spot curve that can be constructed from yields of actual zero-
coupon bonds trading in the market. The zero-coupon yield curve is also known as the 
term structure of interest rates.  
 
Spot yields must comply with equation 4.1, this equation assumes annual coupon 
payments and that the calculation is carried out on a coupon date so that accrued interest 
is zero. 
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where 
 
rst is the spot or zero-coupon yield on a bond with t years to maturity 
Dt ≡  1/(1 + rst)

t = the corresponding discount factor 
 
In 4.1, rs1 is the current one-year spot yield, rs2 the current two-year spot yield, and so 
on. Theoretically the spot yield for a particular term to maturity is the same as the yield 
on a zero-coupon bond of the same maturity, which is why spot yields are also known as 
zero-coupon yields.  
 
This last is an important result. Spot yields can be derived from par yields and the 
mathematics behind this are considered in the next section.  
 
As with the yield to redemption yield curve the spot yield curve is commonly used in the 
market. It is viewed as the true term structure of interest rates because there is no 
reinvestment risk involved; the stated yield is equal to the actual annual return. That is, 
the yield on a zero-coupon bond of n years maturity is regarded as the true n-year interest 
rate. Because the observed government bond redemption yield curve is not considered to 
be the true interest rate, analysts often construct a theoretical spot yield curve. Essentially 
this is done by breaking down each coupon bond into a series of zero-coupon issues. For 
example, £100 nominal of a 10 per cent two-year bond is considered equivalent to £10 
nominal of a one-year zero-coupon bond and £110 nominal of a two-year zero-coupon 
bond.  
 
Let us assume that in the market there are 30 bonds all paying annual coupons. The first 
bond has a maturity of one year, the second bond of two years, and so on out to thirty 
years. We know the price of each of these bonds, and we wish to determine what the 
prices imply about the market’s estimate of future interest rates. We naturally expect 
interest rates to vary over time, but that all payments being made on the same date are 
valued using the same rate. For the one-year bond we know its current price and the 
amount of the payment (comprised of one coupon payment and the redemption proceeds) 
we will receive at the end of the year; therefore we can calculate the interest rate for the 
first year : assume the one-year bond has a coupon of 10 per cent. If we invest £100 today 
we will receive £110 in one year’s time, hence the rate of interest is apparent and is 10 
per cent. For the two-year bond we use this interest rate to calculate the future value of its 
current price in one year’s time : this is how much we would receive if we had invested 
the same amount in the one-year bond. However the two-year bond pays a coupon at the 
end of the first year; if we subtract this amount from the future value of the current price, 
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the net amount is what we should be giving up in one year in return for the one remaining 
payment. From these numbers we can calculate the interest rate in year two. 
 
Assume that the two-year bond pays a coupon of 8 per cent and is priced at 95.00. If the 
95.00 was invested at the rate we calculated for the one-year bond (10 per cent), it would 
accumulate £104.50 in one year, made up of the £95 investment and coupon interest of 
£9.50. On the payment date in one year’s time, the one-year bond matures and the two-
year bond pays a coupon of 8 per cent. If everyone expected that at this time the two-year 
bond would be priced at more than 96.50 (which is 104.50 minus 8.00), then no investor 
would buy the one-year bond, since it would be more advantageous to buy the two-year 
bond and sell it after one year for a greater return. Similarly if the price was less than 
96.50 no investor would buy the two-year bond, as it would be cheaper to buy the shorter 
bond and then buy the longer-dated bond with the proceeds received when the one-year 
bond matures. Therefore the two-year bond must be priced at exactly 96.50 in 12 months 
time. For this £96.50 to grow to £108.00 (the maturity proceeds from the two-year bond, 
comprising the redemption payment and coupon interest), the interest rate in year two 
must be 11.92 per cent. We can check this using the present value formula covered 
earlier. At these two interest rates, the two bonds are said to be in equilibrium.  
 
This is an important result and shows that there can be no arbitrage opportunity along the 
yield curve; using interest rates available today the return from buying the two-year bond 
must equal the return from buying the one-year bond and rolling over the proceeds (or 
reinvesting) for another year. This is the known as the breakeven principle. 
 
Using the price and coupon of the three-year bond we can calculate the interest rate in 
year three in precisely the same way. Using each of the bonds in turn, we can link 
together the implied one-year rates for each year up to the maturity of the longest-dated 
bond. The process is known as boot-strapping. The “average” of the rates over a given 
period is the spot yield for that term : in the example given above, the rate in year one is 
10 per cent, and in year two is 11.92 per cent. An investment of £100 at these rates would 
grow to £123.11. This gives a total percentage increase of 23.11 per cent over two years, 
or 10.956% per annum (the average rate is not obtained by simply dividing 23.11 by 2, 
but - using our present value relationship again - by calculating the square root of “1 plus 
the interest rate” and then subtracting 1 from this number). Thus the one-year yield is 10 
per cent and the two-year yield is 10.956 per cent. 
 
In real-world markets it is not necessarily as straightforward as this; for instance on some 
dates there may be several bonds maturing, with different coupons, and on some dates 
there may be no bonds maturing. It is most unlikely that there will be a regular spacing of 
redemptions exactly one year apart. For this reason it is common for practitioners to use a 
software model to calculate the set of implied forward rates which best fits the market 
prices of the bonds that do exist in the market. For instance if there are several one-year 
bonds, each of their prices may imply a slightly different rate of interest. We will choose 
the rate which gives the smallest average price error. In practice all bonds are used to find 
the rate in year one, all bonds with a term longer than one year are used to calculate the 
rate in year two, and so on. The zero-coupon curve can also be calculated directly from 
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the par yield curve using a method similar to that described above; in this case the bonds 
would be priced at par (100.00) and their coupons set to the par yield values. 
 
The zero-coupon yield curve is ideal to use when deriving implied forward rates. It is also 
the best curve to use when determining the relative value, whether cheap or dear, of 
bonds trading in the market, and when pricing new issues, irrespective of their coupons. 
However it is not an accurate indicator of average market yields because most bonds are 
not zero-coupon bonds. 
 
Zero-coupon curve arithmetic 
Having introduced the concept of the zero-coupon curve in the previous paragraph, we 
can now illustrate the mathematics involved. When deriving spot yields from par yields, 
one views a conventional bond as being made up of an annuity, which is the stream of 
coupon payments, and a zero-coupon bond, which provides the repayment of principal. 
To derive the rates we can use (4.1), setting Pd = M = 100 and C = rpT, shown below. 
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where rpT is the par yield for a term to maturity of T years, where the discount factor DT 
is the fair price of a zero-coupon bond with a par value of £1 and a term to maturity of T 
years, and where 
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is the fair price of an annuity of £1 per year for T years (with A0 = 0 by convention). 
Substituting 4.3 into 4.2 and re-arranging will give us the expression below for the T-year 
discount factor. 
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In (4.1) we are discounting the t-year cash flow (comprising the coupon payment and/or 
principal repayment) by the corresponding t-year spot yield. In other words rst is the 
time-weighted rate of return on a t-year bond. Thus as we said in the previous section the 
spot yield curve is the correct method for pricing or valuing any cash flow, including an 
irregular cash flow, because it uses the appropriate discount factors. This contrasts with 
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the yield-to-maturity procedure discussed earlier, which discounts all cash flows by the 
same yield to maturity. 
 
 
4.5 The forward yield curve 
 
The forward (or forward-forward) yield curve is a plot of forward rates against term to 
maturity. Forward rates satisfy expression (4.5) below. 
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(4.5) 
 
where 
 
t rf−1 t

)

 is the implicit forward rate (or forward-forward rate) on a one-year bond maturing 
in  
 year t 
 
Comparing (4.1) and (4.2) we can see that the spot yield is the geometric mean of the 
forward rates, as shown below. 
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This implies the following relationship between spot and forward rates : 
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C. Theories of the yield curve 
 
As we can observe by analysing yield curves in different markets at any time, a yield 
curve can be one of four basic shapes, which are : 
 
• normal : in which yields are at “average” levels and the curve slopes gently upwards 

as maturity increases; 
 
• upward sloping (or positive or rising) : in which yields are at historically low levels, 

with long rates substantially greater than short rates; 
 
• downward sloping (or inverted or negative) : in which yield levels are very high by 

historical standards, but long-term yields are significantly lower than short rates; 
 
• humped : where yields are high with the curve rising to a peak in the medium-term 

maturity area, and then sloping downwards at longer maturities. 
 
Various explanations have been put forward to explain the shape of the yield curve at any 
one time, which we can now consider. 
 
Unbiased or pure expectations hypothesis 
If short-term interest rates are expected to rise, then longer yields should be higher than 
shorter ones to reflect this. If this were not the case, investors would only buy the shorter-
dated bonds and roll over the investment when they matured. Likewise if rates are 
expected to fall then longer yields should be lower than short yields. The expectations 
hypothesis states that the long-term interest rate is a geometric average of expected future 
short-term rates. This was in fact the theory that was used to derive the forward yield 
curve in (4.5) and (4.6) previously. This gives us : 
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where rsT is the spot yield on a T-year bond and t-1rft is the implied one-year rate t years 
ahead. For example if the current one-year rate is rs1 = 6.5% and the market is expecting 
the one-year rate in a year’s time to be 1rf2 = 7.5%, then the market is expecting a £100 
investment in two one-year bonds to yield : 
 
£100 (1.065)(1.075) = £114.49 
 
after two years. To be equivalent to this an investment in a two-year bond has to yield the 
same amount, implying that the current two-year rate is rs2 = 7%, as shown below. 
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£100 (1.07)2 = £114.49 
 
This result must be so, to ensure no arbitrage opportunities exist in the market and in fact 
we showed as much, earlier in the chapter when we considered forward rates. 
 
A rising yield curve is therefore explained by investors expecting short-term interest rates 
to rise, that is 1rf2>rs2. A falling yield curve is explained by investors expecting short-
term rates to be lower in the future. A humped yield curve is explained by investors 
expecting short-term interest rates to rise and long-term rates to fall. Expectations, or 
views on the future direction of the market, are a function of the expected rate of 
inflation. If the market expects inflationary pressures in the future, the yield curve will be 
positively shaped, while if inflation expectations are inclined towards disinflation, then 
the yield curve will be negative. 
 
Liquidity preference theory 
Intuitively we can see that longer maturity investments are more risky than shorter ones. 
An investor lending money for a five-year term will usually demand a higher rate of 
interest than if he were to lend the same customer money for a five-week term. This is 
because the borrower may not be able to repay the loan over the longer time period as he 
may for instance, have gone bankrupt in that period. For this reason longer-dated yields 
should be higher than short-dated yields. 
 
We can consider this theory in terms of inflation expectations as well. Where inflation is 
expected to remain roughly stable over time, the market would anticipate a positive yield 
curve. However the expectations hypothesis cannot by itself explain this phenomenon, as 
under stable inflationary conditions one would expect a flat yield curve. The risk inherent 
in longer-dated investments, or the liquidity preference theory, seeks to explain a positive 
shaped curve. Generally borrowers prefer to borrow over as long a term as possible, 
while lenders will wish to lend over as short a term as possible. Therefore, as we first 
stated, lenders have to be compensated for lending over the longer term; this 
compensation is considered a premium for a loss in liquidity for the lender. The premium 
is increased the further the investor lends across the term structure, so that the longest-
dated investments will, all else being equal, have the highest yield. 
 
Segmentation Hypothesis 
The capital markets are made up of a wide variety of users, each with different 
requirements. Certain classes of investors will prefer dealing at the short-end of the yield 
curve, while others will concentrate on the longer end of the market. The segmented 
markets theory suggests that activity is concentrated in certain specific areas of the 
market, and that there are no inter-relationships between these parts of the market; the 
relative amounts of funds invested in each of the maturity spectrum causes differentials in 
supply and demand, which results in humps in the yield curve. That is, the shape of the 
yield curve is determined by supply and demand for certain specific maturity 
investments, each of which has no reference to any other part of the curve. 
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For example banks and building societies concentrate a large part of their activity at the 
short end of the curve, as part of daily cash management (known as asset and liability 
management) and for regulatory purposes (known as liquidity requirements). Fund 
managers such as pension funds and insurance companies however are active at the long 
end of the market. Few institutional investors however have any preference for medium-
dated bonds. This behaviour on the part of investors will lead to high prices (low yields) 
at both the short and long ends of the yield curve and lower prices (higher yields) in the 
middle of the term structure. 
 
Further views on the yield curve 
As one might expect there are other factors that affect the shape of the yield curve. For 
instance short-term interest rates are greatly influenced by the availability of funds in the 
money market. The slope of the yield curve (usually defined as the 10-year yield minus 
the three-month interest rates) is also a measure of the degree of tightness of government 
monetary policy. A low, upward sloping curve is often thought to be a sign that an 
environment of cheap money, due to a more loose monetary policy, is to be followed by a 
period of higher inflation and higher bond yields. Equally a high downward sloping curve 
is taken to mean that a situation of tight credit, due to more strict monetary policy, will 
result in falling inflation and lower bond yields. Inverted yield curves have often 
preceded recessions; for instance The Economist in an article from April 1998 remarked 
that in the United States every recession since 1955 bar one has been preceded by a 
negative yield curve. The analysis is the same: if investors expect a recession they also 
expect inflation to fall, so the yields on long-term bonds will fall relative to short-term 
bonds.  
 
There is significant information content in the yield curve, and economists and bond 
analysts will consider the shape of the curve as part of their policy making and 
investment advice. The shape of parts of the curve, whether the short-end or long-end, as 
well that of the entire curve, can serve as useful predictors of future market conditions. 
As part of an analysis it is also worthwhile considering the yield curves across several 
different markets and currencies. For instance the interest-rate swap curve, and its 
position relative to that of the government bond yield curve, is also regularly analysed for 
its information content. In developed country economies the swap market is invariably as 
liquid as the government bond market, if not more liquid, and so it is common to see the 
swap curve analysed when making predictions about say, the future level of short-term 
interest rates.  
 
Government policy will influence the shape and level of the yield curve, including policy 
on public sector borrowing, debt management and open-market operations. The markets 
perception of the size of public sector debt will influence bond yields; for instance an 
increase in the level of debt can lead to an increase in bond yields across the maturity 
range. Open-market operations, which refers to the daily operation by the Bank of 
England to control the level of the money supply (to which end the Bank purchases short-
term bills and also engages in repo dealing), can have a number of effects. In the short-
term it can tilt the yield curve both upwards and downwards; longer term, changes in the 
level of the base rate will affect yield levels. An anticipated rise in base rates can lead to a 

©Moorad Choudhry 2001, 2008 10



 

drop in prices for short-term bonds, whose yields will be expected to rise; this can lead to 
a temporary inverted curve. Finally debt management policy will influence the yield 
curve. (In the United Kingdom this is now the responsibility of the Debt Management 
Office.) Much government debt is rolled over as it matures, but the maturity of the 
replacement debt can have a significant influence on the yield curve in the form of humps 
in the market segment in which the debt is placed, if the debt is priced by the market at a 
relatively low price and hence high yield. 
 
 
B. SPOT AND FORWARD RATES: Spot Rates and boot-strapping 
 
 
Par, spot and forward rates have a close mathematical relationship. Here we explain and 
derive these different interest rates and explain their application in the markets. Note that 
spot interest rates are also called zero-coupon rates, because they are the interest rates 
that would be applicable to a zero-coupon bond. The two terms are used synonymously, 
however strictly speaking they are not exactly similar. Zero-coupon bonds are actual 
market instruments, and the yield on zero-coupon bonds can be observed in the market. A 
spot rate is a purely theoretical construct, and so cannot actually be observed directly. For 
our purposes though, we will use the terms synonymously.  
 
A par yield is the yield-to-maturity on a bond that is trading at par. This means that the 
yield is equal to the bond’s coupon level. A zero-coupon bond is a bond which has no 
coupons, and therefore only one cash flow, the redemption payment on maturity. It is 
therefore a discount instrument, as it is issued at a discount to par and redeemed at par. 
The yield on a zero-coupon bond can be viewed as a true yield, at the time that is it 
purchased, if the paper is held to maturity. This is because no reinvestment of coupons is 
involved and so there are no interim cash flows vulnerable to a change in interest rates. 
Zero-coupon yields are the key determinant of value in the capital markets, and they are 
calculated and quoted for every major currency. Zero-coupon rates can be used to value 
any cash flow that occurs at a future date. 
 
Where zero-coupon bonds are traded the yield on a zero-coupon bond of a particular 
maturity is the zero-coupon rate for that maturity. Not all debt capital trading 
environments possess a liquid market in zero-coupon bonds. However it is not necessary 
to have zero-coupon bonds in order to calculate zero-coupon rates. It is possible to 
calculate zero-coupon rates from a range of market rates and prices, including coupon 
bond yields, interest-rate futures and currency deposits.  
 
We illustrate shortly the close mathematical relationship between par, zero-coupon and 
forward rates. We also illustrate how the boot-strapping technique could be used to 
calculate spot and forward rates from bond redemption yields. In addition, once the 
discount factors are known, any of these rates can be calculated. The relationship 
between the three rates allows the markets to price interest-rate swap and FRA rates, as a 
swap rate is the weighted arithmetic average of forward rates for the term in question.  
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Discount Factors and the Discount Function 
 
It is possible to determine a set of discount factors from market interest rates. A discount 
factor is a number in the range zero to one which can be used to obtain the present value 
of some future value. We have 
 

ttt d FV x PV =          (1) 
 
where 
 
PVt is the present value of the future cash flow occurring at time t  
FVt is the future cash flow occurring at time t 
dt is the discount factor for cash flows occurring at time t  
 
 
 
Discount factors can be calculated most easily from zero-coupon rates; equations 2 and 3 
apply to zero-coupon rates for periods up to one year and over one year respectively. 
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where 
 
dt is the discount factor for cash flows occurring at time t  
rst is the zero-coupon rate for the period to time t  
Tt is the time from the value date to time t, expressed in years and fractions of a year 
 
Individual zero-coupon rates allow discount factors to be calculated at specific points 
along the maturity term structure. As cash flows may occur at any time in the future, and 
not necessarily at convenient times like in three months or one year, discount factors 
often need to be calculated for every possible date in the future. The complete set of 
discount factors is called the discount function. 
 
 
Implied Spot and Forward Rates 
 
In this section we describe how to obtain zero-coupon and forward interest rates from the 
yields available from coupon bonds, using a method known as boot-strapping. In a 
government bond market such as that for US Treasuries or UK gilts, the bonds are 
considered to be default-free. The rates from a government bond yield curve describe the 
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risk-free rates of return available in the market today, however they also imply (risk-free) 
rates of return for future time periods. These implied future rates, known as implied 
forward rates, or simply forward rates, can be derived from a given spot yield curve 
using boot-strapping. This term reflects the fact that each calculated spot rate is used to 
determine the next period spot rate, in successive steps. 
 
Table 1 shows an hypothetical benchmark gilt yield curve for value as at 7 December 
2000. The observed yields of the benchmark bonds that compose the curve are displayed 
in the last column. All rates are annualised and assume semi-annual compounding. The 
bonds all pay on the same coupon dates of 7 June and 7 December, and as the value date 
is a coupon date, there is no accrued interest on any of the bonds.1 The clean and dirty 
prices for each bond are identical. 
 
 
 

able 1 Hypothetical UK government bond yields as at 7 December 2000 

he gross redemption yield or yield-to-maturity of a coupon bond describes the single 

the bond is purchased on issue; 

all the coupons paid throughout the bond’s life are re-invested at the same yield to 

 
the bond is held until maturity. 

 
                                                

Bond Term to maturity 
(years)

Coupon Maturity 
date

Price Gross 
Redemption 

Yield
4%  Treasury 2001 0.5 4% 07-Jun-01 100 4%
5%  Treasury 2001 1 5% 07-Dec-01 100 5%
6%  Treasury 2002 1.5 6% 07-Jun-02 100 6%
7%  Treasury 2002 2 7% 07-Dec-02 100 7%
8%  Treasury 2003 2.5 8% 07-Jun-03 100 8%
9%  Treasury 2003 3 9% 07-Dec-03 100 9%

T
 
 
T
rate that present-values the sum of all its future cash flows to its current price. It is 
essentially the internal rate of return of the set of cash flows that make up the bond. This 
yield measure suffers from a fundamental weakness in that each cash-flow is present-
valued at the same rate, an unrealistic assumption in anything other than a flat yield curve 
environment. So the yield to maturity is an anticipated measure of the return that can be 
expected from holding the bond from purchase until maturity. In practice it will only be 
achieved under the following conditions: 
 
 

 
 

maturity at which the bond was purchased; 

 

 
1 Benchmark gilts pay coupon on a semi-annual basis on 7 June and 7 December each year. 
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In ractice these conditions will not p  be fulfilled, and so the yield to maturity of a bond is 
ot a true interest rate for that bond’s maturity period. 

une and 7 December and have the 
me time period - six months - between 7 December 2000, their valuation date and 7 

alysis however, we require a set of true interest rates, 
nd so these must be derived from the redemption yields that we can observe from the 

 spot rates by noting that the six-month bond contains only 
ne future cash flow, the final coupon payment and the redemption payment on maturity. 

n
 
The bonds in table 1 pay semi-annual coupons on 7 J
sa
June 2001, their next coupon date. However since each issue carries a different yield, the 
next six-month coupon payment for each bond is present-valued at a different rate. In 
other words, the six-month bond present-values its six-month coupon payment at its 4% 
yield to maturity, the one-year at 5%, and so on. Because each of these issues uses a 
different rate to present-value a cash flow occurring at the same future point in time, it is 
unclear which of the rates should be regarded as the true interest rate or benchmark rate 
for the six-month period from 7 December 2000 to 7 June 2001. This problem is repeated 
for all other maturities.  
 
For the purposes of valuation and an
a
benchmark bonds trading in the market. These rates we designate as rsi, where rsi is the 
implied spot rate or zero-coupon rate for the term beginning on 7 December 2000 and 
ending at the end of period i. 
 
We begin calculating implied
o
This means that it is in effect trading as a zero-coupon bond, as there is only one cash 
flow left for this bond, is final payment. Since this cash flow’s present value, future value 
and maturity term are known, the unique interest rate that relates these quantities can be 
solved using  the compound interest equation (4) below. 
 

( )

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

⎟
⎠

⎜
⎝

×

1
PV
FV  

+1  PV = V

nm
i mrs

m
        (4) 

 
where 

is the future value 
V is the present value 

iod spot rate 
rest periods per year 

 

e fir  the implied six-month spot rate and is the true 
terest rate for the six-month term beginning on 2 January and ending on 2 July 2000. 

 

⎞⎛
nm

irsF

 
FV 
P
rsi is the implied i-per
m is the number of inte
n is the number of years in the term
 
Th st rate to be solved is referred to as
in
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Equation (4) relates a cash flow’s present value and future value in terms of an associated 

terest rate, compounding convention and time period. Of course if we re-arrange it, we 
ay use it to solve for an implied spot rate. For the six-month bond the final cash flow on 

in
m
maturity is £102, comprised of the £2 coupon payment and the £100 (par) redemption 
amount. So we have for the first term, i =1, FV = £102, PV = £100, n = 0.5 years and m = 
2. This allows us to calculate the spot rate as follows : 
 

( )( )
( )( )

1FV/PV 
2 x 0.5

nm −×= mrsi

%000.4
04000.0

1£102/£100  2

1

1

1

=
=

−×=

rs
rs
s        (5) 

 
Thus the implied six-month spot rate or zero-coupon rate is equal to 4 per cent.2 We now 
need to determine the implied one-year spot rate for the term from 7 December 2000 to 7 

ne 2001. We note that the one-year issue has a 5% coupon and contains two future cash 

 = £2.45098 

nd principal payment is found by 
 cash flow, determined above, from the 

tal present value (current price) of the issue : 

ed by using the £97.54902 present value 

                                                

r

Ju
flows : a £2.50 six-month coupon payment on 7 June 2001 and a £102.50 one-year 
coupon and principal payment on 7 December 2001. Since the first cash flow occurs on 7 
June - six months from now - it must be present-valued at the 4 per cent six-month spot 
rate established above. Once this present value is determined, it may be subtracted from 
the £100 total present value (its current price) of the one-year issue to obtain the present 
value of the one-year coupon and cash flow. Again we then have a single cash flow with 
a known present value, future value and term. The rate that equates these quantities is the 
implied one-year spot rate. From equation (4) the present value of the six-month £2.50 
coupon payment of the one-year benchmark bond, discounted at the implied six-month 
spot rate, is : 
 
PV6-mo cash flow, 1-yr bond = £2.50/(1 + 0.04/2)(0.5 x 2)

  
 
The present value of the one-year £102.50 coupon a
subtracting the present value of the six-month
to
 
PV1-yr cash flow, 1-yr bond = £100 - £2.45098 
   = £97.54902 
 
The implied one-year spot rate is then determin
of the one-year cash flow determined above : 
 

 
2 Of course intuitively we could have concluded that the six-month spot rate was 4 per cent, without the 
need to apply the arithmetic, as we had already assumed that the six-month bond was a quasi-zero-coupon 
bond. 
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( )( )

5.01256%=   
 
The implied 1.5 year spot rate is solv  in the same way: 
 

V6-mo cash flow, 1.5-yr bond  = £3.00 / (1 + 0.04 / 2)(0.5x2)

)(1x2)

0.0501256=  
17.54902£102.50/£9  2 1x2

2 −×=rs
  

ed

P
    = £2.94118 
 
PV1-yr cash flow, 1.5-yr bond  = £3.00 / (1 + 0.0501256 / 2
    = £2.85509 
 
PV1.5-yr cash flow, 1.5-yr bond = £100 - £2.94118 - £2.85509 
    = £94.20373 
 

( )( )

6.04071%=   

−

 
Extending the same process for the two-year bond, we calculate the implied two-year 
spot rate rs4 to be 7.0906 per cent. The implied 2.5-year and three-year spot rates rs5 and 

6  are 8.1709 per cent 9.2879 per cent respectively.   

the true zero-coupon interest rates 
r the  six-month, one-year, 1.5-year, two-year, 2.5-year and three-year terms that begin 

n 7 December 2000 and end on 7 June 2001, 7 December 2001, 7 June 2002, 7 

. This is an 
portant result, and occurs whenever the yield curve is positively sloped. The reason for 

 
 implied by the yield curve for the sequence of six-month periods beginning on 7 

0.0604071=  
1 94.203

 
£ 373 / £103  2 2 x 1.5×=rs

 

rs
 
 
The interest rates rs1, rs2, rs3, rs4, rs5 and rs6 describe 
fo
o
December 2002, 7 June 2003 and 7 December 2003 respectively. They are also called 
implied spot rates because they have been calculated from redemption yields observed in 
the market from the benchmark government bonds that were listed in table 1.  
 
Note that the one-, 1.5-, two-year, 2.5-year and three-year  implied spot rates are 
progressively greater than the corresponding redemption yields for these terms
im
this is that the present values of a bond’s shorter-dated cash flows are discounted at rates 
that are lower than the bond’s redemption yield; this generates higher present values that, 
when subtracted from the current price of the bond, produce a lower present value for the 
final cash flow. This lower present value implies a spot rate that is greater than the issue’s 
yield. In an inverted yield curve environment we observe the opposite result, that is 
implied rates that lie below the corresponding redemption yields.  If the redemption yield 
curve is flat, the implied spot rates will be equal to the corresponding redemption yields. 
 
Once we have calculated the spot or zero-coupon rates for the six-month, one-year,  
1.5-year, two-year, 2.5-year and three-year terms, we can determine the rate of return that
is
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December 2000, 7 June 2001, 7 December 2001, 7 June 2002 and 7 December 2002. 

precisely with the first of the series of six-month periods, this rate 
escribes the risk-free rate of return for the first six-month period. It is therefore equal to 

eriod forward”) and remains in effect for six months (“six-month rate”). It is therefore 

the return received by an investor 
ver any given term would depend on whether an investment is made at the start period 

al 
e return made from investing in a shorter period and successively reinvesting to a 

These period rates are referred to as implied forward rates  or forward-forward rates and 
we denote these as rfi, where rfi is the implied six-month forward interest rate today for 
the ith period. 
 
Since the implied six-month zero-coupon rate (spot rate) describes the return for a term 
that coincides 
d
the first period spot rate. Thus we have rf1 = rs1 = 4.0 per cent, where rf1 is the risk-free 
forward rate for the first six-month period beginning at period 1. We show now how the 
risk-free rates for the second, third, fourth, fifth and sixth six-month periods, designated 
rf2, rf3 , rf4, rf5 and rf6 respectively may be solved from the implied spot rates. 
 
The benchmark rate for the second semi-annual period rf2 is referred to as the one-period 
forward six-month rate, because it goes into effect one six-month period from now (“one-
p
the six-month rate in six months time, and is also referred to as the 6-month forward-
forward rate. This rate, in conjunction with the rate from the first period rf1, must provide 
returns that match those generated by the implied one-year spot rate for the entire one-
year term. In other words, one pound invested for six months from 7 December 2000 to 7 
June 2001 at the first period’s benchmark rate of 4 per cent and then reinvested for 
another six months from 7 June 2001 to 7 December 2001 at the second period’s (as yet 
unknown) implied forward rate must enjoy the same returns as one pound invested for 
one year from 7 December 2000 to 7 December 2001 at the implied one-year spot rate of 
5.0125 per cent. This reflects the law of no-arbitrage. 
 
A moment’s thought will convince us that this must be so. If this were not the case, we 
might observe an interest rate environment in which 
o
for the entire maturity term or over a succession of periods within the whole term and re-
invested. If there were any discrepancies between the returns received from each 
approach, there would exist an unrealistic arbitrage opportunity, in which investments for 
a given term carrying a lower return might be sold short against the simultaneous 
purchase of investments for the same period carrying a higher return, thereby locking in a 
risk-free, cost-free profit. Therefore forward interest rates must be calculated so that they 
are arbitrage-free. Forward rates are not therefore a prediction of what spot interest rates 
are likely to be in the future, rather a mathematically derived set of interest rates that 
reflect the current spot term structure and the rules of no-arbitrage. Excellent 
mathematical explanations of the no-arbitrage property of interest-rate markets are 
contained in Ingersoll (1987), Jarrow (1996), and Robert Shiller (1990) among others. 
 
The existence of a no-arbitrage market of course makes it straightforward to calculate 
forward rates; we know that the return from an investment made over a period must equ
th
matching term. If we know the return over the shorter period, we are left with only one 
unknown, the full-period forward rate, which is then easily calculated. In our example, 
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having established the rate for the first six-month period, the rate for the second six-
month period - the one-period forward six-month rate - is determined below. 
 
The future value of £1 invested at rf1, the period 1 forward rate, at the end of the first six-
month period is calculated as follows : 
 

( )

2
 + 1  1£FV

2 x 0.5
1

1 ⎟
⎠
⎞

⎜
⎝
⎛×=

rf

£1.02000=      
2

0.04 + 1  £1=      
1

⎟
⎠
⎞

⎜
⎝
⎛×  

 
The future value of £1 at the end of the one-year term, invested at the implied benchmark 
one-year spot rate is determined as follows : 
 

( )

2
 + 1  1£FV

21
2

2 ⎟
⎠
⎞

⎜
⎝
⎛×=

xrs

£1.050754=      
2

0.0501256 + 1 1£      
2

⎟
⎠
⎞

⎜
⎝
⎛×=  

 
The implied benchmark one-period forward rate rf2 is the rate that equates the value of 
FV1 (£1.02) on 7 June 2001 to FV2 (£1.050754) on 7 December 2001. From equation (4) 

e have : w
 

( )

%0302.6    
060302.0    

1
£1.02

£1.050754  2    

1
FV
FV  2 2

2 ⎟
⎞

⎜
⎜
⎛

×=rf 2 x 0.5

1

=
=

⎟
⎠
⎞

⎜
⎝
⎛ −×=

⎟
⎠⎝

−

 

 
 
In other words £1 invested from 7 December to 7 June at 4.0 per cent (the implied 

rward rate for the first period) and then reinvested from 7 June to 7 December 2001 at 
.0302 per cent (the implied forward rate for the second period) would accumulate the 

fo
6
same returns as £1 invested from 7 December 2000 to 7 December 2001 at 5.01256 per 
cent (the implied one-year spot rate). 
 
The rate for the third six-month period - the two-period forward six-month interest rate – 
may be calculated in the same way: 
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FV2 = £1.050754 
 

(1.5 x 2)V3 = £1 x (1 + rs3 / 2)
4071 / 2)3 

= £1.093375 

F
 = £1 x (1 + 0.060
 
 

( )

8.1125%=    
0.081125=    

1£1.050754
£1.093375  2=    1

4

⎟
⎠
⎞⎜

⎝
⎛ −×

⎠⎝

 

 
In the same way the three-period forward six-month rate rf4 is calculated to be 10.27247 
per cent. The rest of the results are shown in table 2. We say one-period forward rate 
ecause it is the forward rate that applies to the six-month period. The results of the 

e a set of bonds with exact 
nd/or equal periods to maturity and coupons falling on the same date. Nor will they all 

1
FV

  2 2  0.5 3
3 ⎟

⎟
⎜
⎜ −×= ×rf

FV ⎞⎛

b
implied spot (zero-coupon) and forward rate calculations along with the given 
redemption yield curve are illustrated graphically in Figure 1.  
 
The simple bootstrapping methodology can be applied using a spreadsheet for actual 
market redemption yields. However in practice we will not hav
a
be priced conveniently at par. In designing a spreadsheet spot rate calculator therefore, 
the coupon rate and maturity date is entered as standing data and usually interpolation is 
used when calculating the spot rates for bonds with uneven maturity dates. A spot curve 
model that uses this approach in conjunction with the boot-strapping method is available 
for downloading at www.yieldcurve.com Market practitioners usually use discount 
factors to extract spot and forward rates from market prices. For an account of this 
method, see Choudhry et al (2001), chapter 9. 
 

Term to 
maturity

Yield to 
maturity

Implied spot 
rate

Implied one-

Table 2 Implied spot and forward rates 
 
 

period forward 
rate

0.5 4.0000% 4.00000% 4.00000%
1 5.0000% 5.01256% 6.03023%

1.5 6.0000% 6.04071% 8.11251%
2 7.0000% 7.09062% 10.27247%

2.5 8.0000% 8.17090% 12.24833%
3 9.0000% 9.28792% 14.55654%
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Figure 1 Par, spot and forward yield curves 
 
 
 
Examples 
 
Example 1 
Consider the following spot yields : 
 
1-year  10% 
2-year  12% 
 
Assume that a bank’s client wishes to lock in today the cost of borrowing 1-year funds in one year’s ti
The solution for the bank (and the mechanism to enable the bank to quote a price to the client) in

me. 
volves 

1-year funds at 10% and investing the proceeds for two years at 12%. As we observed above, the 
o-arbitrage principle means that the same return must be generated from both fixed rate and reinvestment 
rategies. 

)

)

raising 
n
st
 

sing the following formula: U
 

( ) ( )(

(
( ) 1
1 1

−
+ y

+1
=

y
rf

11

2
2

1
2

2 ++=+ rfrsrs
          

forwa s calculated to be 14.04 per cent. 

1

 
the relevant rd rate i
 
 
Example 2 
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If a 1-year AAA Eurobond trading at par yields 10% and a 2-year Eurobond of similar credit quality, also 
trading at par, yields 8.75%, what should be the price of a 2-year AAA zero-coupon bond? Note that 
Eurobonds pay coupon annually. 

per cent nominal)  100 

(b) less amount receivable from sale of first coupon 
 on this bond (that is, its present value)  = 8.75 / 1 + 0.10 
    
 
(c) equals amount that must be received on sale 
 of second coupon plus principal in order  

o break even     92.05 

below (that is, the 2-year zero-coupon yield) 
- receive 92.05 

y out on maturity 108.75     

n bo  
with nominal value 100, to yield 8.69%?  = (92.05 / 108.75) x 100 

= 84.64 

xample 3 
ighly  which he could issue a 2-year zero-coupon USD 

urobon Treasury zero-coupon rates were : 

 Yr  6.25% 
 

 Yr 

) rrowi pread  over th se benc ark yi ou could cover the 
owing funds for 5 years on a zero-coupon basis and placing these funds in 

the market for 3 years before lending them on to your client. Assume annual interest compounding 
f the loans) 

 
(a) Cost of 2-year bond (
 

   = 7.95 

 t
 
(d) calculate the yield implied in the cash flows  
 
 
 - pa
 
 Therefore     92.05 = 108.75 / (1 + R)2

 Gives R equal to 8.69% 
 
(e) What is the price of a 2-year zero-coupo nd
 
       
 
 
E
A h -rated customer asks you to fix a yield at
E d in three years’ time. At this time the US 
 
1
2 Yr  6.75% 
3  7.00% 
4 Yr  7.125% 
5 Yr  7.25% 
 
(a Ignoring bo ng s s e hm elds, as a market maker y
 exposure created by borr
 
 (even if none is actually paid out during the life o
 

 Borrowing rate for 5 years 
R5⎡ ⎤   = 0.0725 
100⎣⎢ ⎦⎥

 

 Lending rate for 3 years 
R
100

3⎡
⎣⎢

⎤
⎦⎥

  = 0.0700 

 
  
(b) T  arbitraghe key e relationship is : 

otal co ing = Total Return on Investments 

  = )x5

 
 T st of fund
 

( )1 5+ R5 ( ) (1 3 2+ R  x 1+ R3 3   
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 Therefore the break-even forward yield is : 
 
  

 
( )
( )R

R
3x5

5

3

=
+⎣

⎢
⎢ ⎦

⎥
⎥
−

1
132  

R+⎡ ⎤1 5

ple
orward rate calculation for money market term 

onsider two positions: 
po of £100 milli 2000 for 30 days at 6.500%, 
verse repo of £1 for  60 days at

he two d 30-day (repo) interest rate exposure (a 30 versus 60 
ay forward rate). What forward rate must be used if the trader wished to hedge this exposure, assuming no 

nd a 360-day base? 
 

he 30-day by 60-day forward rate can be calculated using the following formula : 
 

 
 = 7.63% 
 
 
 
Exam  4 
F
 
C
re on gilts GC from 2 January 
re 00 million gilts GC from 2 January  6.625%. 
 
T  positions can be said to be a 30-day forwar
d
bid-offer spreads a

T

SL
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M
Srs

M
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⎝
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⎠
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⎝
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1 1

 

his interest rate exposure can be hedged using interest rate futures or Forward Rate Agreements (FRAs). 
Either method is an effective hedging mechanism, although the trader must be aware of : 
 
• basis risk that exists between Repo rates and the forward rates implied by futures and FRAs; 
• date mismatched between expiry of futures contracts and the maturity dates of the repo transactions. 
 

rward g 

rf

⎣
 

here w
 
rf is the forward rate 
rs2 is the long period rate 
sr 1 is the short period rate 

L is the long period days 
S is the short period days 
M is the day-count base 
 
Using this formula we obtain a 30 v 60 day forward rate of 6.713560%. 
 
T

 
 
 
Fo  Rates and Compoundin
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Exa s 1-3 above are for forwmple ard rate calculations more than one year into the future, and therefore the 
ula ng of interest into consideration. Example 4 is for a forward rate within 

iod bullet interest payments. A different formula is required to account for 
 sub-o wn in the example. 

pot and forward rates that are calculated from current market rates follow mathematical 
ng today 

arket view on where interest rates will be (or should be!) in the future. However 
rward rates are not a prediction of future rates. It is important to be aware of this 

istinction. If we were to plot the forward rate curve for the term structure in three 
are it in three months with the actual term structure 
s would almost certainly not match. However this has no 

cture. The current term structure incorporates 
ll known information, both economic and political, and reflects the market’s views. This 

xact mpany’s share price reflects all that is known 
ut t ed to happen with regard to the company in the 

form used must take compoundi
the next 12 months, with one-per
the ne year periods, as sho
 
 
C. Understanding Forward Rates 
 
S
principles to establish what the market believes the arbitrage-free rates for deali
at rates that are effective at some point in the future. As such forward rates are a type of 
m
fo
d
months time, and then comp
revailing at the time, the curvep

bearing on our earlier statement, that forward rates are the market’s  expectation of future 
rates. The main point to bear in mind is that we are not comparing like-for-like when 
plotting forward rates against actual current rates at a future date. When we calculate 
forward rates, we use the current term stru
a
is e ly the same as when we say that a co
abo he company and all that is expect
near future, including expected future earnings. The term structure of interest rates 
reflects everything the market knows about relevant domestic and international factors. It 
is this information then, that goes into the forward rates calculation. In three months time 
though, there will be new developments that will alter the market’s view and therefore 
alter the current term structure; these developments and events were (by definition, as we 
cannot know what lies in the future!) not known at the time we calculated and used the 
three-month forward rates. This is why rates actually turn out to be different from what 
the term structure predicted at an earlier date. However for dealing today we use today’s 
forward rates, which reflect everything we know about the market today. 
 
 
 

 

 

 

 

 

B. THE TERM STRUCTURE OF INTEREST RATES 
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We illustrate a more advanced description of what we have just discussed. It is used to 
obtain a zero-coupon curve, in the same way as seen previously, but just using more 

rmal mathematics. 

nder the following conditions: 
 

frictionless trading conditions; 
 competitive economy; 

discrete time economy; 

ith discrete trading dates of

fo
 
U

• 
•
• 
 
w  { }τ,.....,2,1,0 , we assume a set of zero-coupon bonds with 

aturities m { }τ,.....,2,1,0
aturity at tim

. The price of a zero-coupon bond at time t with a nominal value 
of £1 on m e T (such that ) is denoted with the term P(t, T). The bonds 
re considered risk-free. 

 

 

tT ≥
a

The price of a bond at time t of a bond of maturity T is given by 

( )
( )[ ]( )tTTty

TtP
−

=
,

1,  

 
where y(t, T) is the yield of a T-maturity bond at time t. Re-arranging the above 
xpression, the yield at time t of a bond of maturity T is given by e

 

( ) ( )

( )tT −
⎤⎡

/1
1

TtP
Ty ⎥

⎦
⎢
⎣

=
,

, . t

orward rat
 
The time t f e that applies to the period [T, T+1] is denoted with f(t, T) and is 
given in terms of the bond prices by 
 

( ) ( )
( )1, +TtP

,
=

TtP,Tt . 

This forward rate is th  rate that would be charged at time t for a loan that ran over the  
period [T, T+1]. 

)

f

 
 

e

 
From the above expression we can derive an expression for the price of a bond in terms 
of the forward rates that run from t to T-1, which is 
 

( )
(∏ −

=

= 1 ,

1, T
tj

jtf
TtP . 

 
This expression means: 
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( ) ( ) ( ) (∏ −

+⋅=
1 ....1,,,T tfttfttfjtf )1,
tj

T , that is, the result of multiplying the rates 

that apply to the interest periods in index j that run from t to T-1. It means that the price 
of a bond is equal to £1 received at time T, that has been discounted by the forward rates 

at apply to the maturity periods up to time T-1.  

wing expression for the forward rate applicable to the period (t, t), 

=
−

th
 
The expression is derived as shown below: 
 

onsider the folloC
 

( ) ( )
( )1,

,, =
ttPttf  
+ttP

 
but of course P(t, t) is  therefore  equal to 1, so
 

( ) ( )1,
,

+
=

ttP
ttf  1

 
which can be re-arranged to give 
 

( ) ( )ttf
ttP

,
11, =+ . 

 
For the next interest period we can set 
 

( ) ( )
( )2,

1,1, +
=+

ttPttf  
+ttP

 
which can be re-arranged to give 
 

( ) ( )
( ) .

1,2, +
=+

ttPtt  P
1, +ttf

 
We can substitute the expression for f(t, t+1) into the above and simplify to give us 
 

( ) ( ) ( ) .1,,
12, =+tt  P

+ttfttf
 
If we then continue for subsequent interest periods  (t, t+3) onwards, we obtain 
 

( ) ( ) ( ) ( ) ( )1,....2,1,,
1, =+ jtt

−+++ jttfttfttfttf
 P
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which is simplified in lt above. to our resu
 
 
 
 
Given a set of risk-free zero-coupon bond prices, we can calculate the forward rate 

 time that matures up to the point T-1. Alternatively, 

he zero-coupon or spot rate is defined as the rate applicable at time t on a one-period 
risk-free loan (such as a one-period zero-coupon bond priced at time t). If the spot rate is 
defined by r(t) we can state that  

This spot rate is in fact the return generated by the shortest-maturity bond, shown by 
 

. 

 bond prices, spot rates and spot rate discount 
ctors.  

he box below shows bond prices for zero-coupon bonds of maturity value $1. We can 

 

 

applicable to a specified period of
given the set of forward rates we are able to calculate bond prices.  
 
T

 
( ) ( )ttftr ,= . 

 

( ) ( )1, += ttytr
 

e can define forward rates in terms of W
fa
 
T
plot a yield curve based on these prices, and we see that we have obtained forward rates 
based on these bond prices, using the technique described above. 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
Example 
Zero-coupon bond prices, spot rates and forward rates 
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apital Markets Instruments: 

 & Littlefield 1987, chapter 

ptions, McGraw-Hill 

an and Hahn (editors), 

---------------------------------------------------------------------------------------------------------- 

Moorad Choudhry is Visiting Professor at the Department of Economics, London 
etropolitan University 

d Bond price [P(0, T) ] Spot rates Forward rates

0.984225 1.016027 1.016027
0.967831 1.016483 1.016939
0.951187 1.016821 1.017498
0.934518 1.017075 1.017836
0.917901 1.017280 1.018102
0.901395 1.017452 1.018312
0.885052 1.017597 1.018465
0.868939 1.017715 1.018542
0.852514 1.017887 1.019267

Perio
0 1
1
2
3
4
5
6
7
8
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