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Abstract 

 
This paper discusses the basic properties of barrier options and an analytical solution 
for pricing such contracts. The significance of monitoring is considered, for example 
the difference between continuous monitoring and discrete monitoring. Pitfalls 
arising from a naïve application of standard option valuation techniques to barrier 
options are pointed out. We also discuss the practical issues related to barrier options, 
such as the advantages they provide to the buyer as well as to the writer, and consider 
practical issues behind valuation.  
 
 
Key words and phrases: Barrier Options, Knock-out Options, Knock-in Options, 
Rebate, Path-dependant Payoff, Black & Scholes, restricted density, Reflection 
Principal.  
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1. Introduction 
 
Barrier options are a class of exotic options which were first priced by Merton 
(1973). The most common approaches used to price these type of derivatives are the 
expectations methods and the differential equation methods. The expectations 
method has been worked out in detail by Rubinstein and Reiner (1991) and also Rich 
(1994). The expectations pricing method requires the determination of the risk-
neutral densities of the underlying price as it breaches the barrier from above and 
below. If rebates apply then the first exit time densities through the barrier are also 
required. Barrier option prices are then obtained, in the usual way, by integrating the 
discounted barrier option pay-off function over the calculated densities. It is 
considered difficult to work out these densities when using the expectation approach, 
it is however remarkable that closed form solutions for all types of barrier options are 
in fact obtained.  
 
A brief discussion of the differential equation method can be found in Wilmott 
(1993). The basic idea of this approach is that all barrier options satisfy the Black-
Scholes partial differential equation but with different domains, expiry conditions 
and boundary conditions. In principal, these partial differential equations (PDE's) can 
be transformed to the diffusion equation and solved. Once again the analysis is 
complex and also requires the evaluation of integrals, but the same closed form 
solutions are obtained. The solution from the PDE method is of course related to the 
solutions from the expectation approach. Ritchken (1995) has investigated 
computational aspects of barrier option pricing using binomial and trinomial lattice.  
 
In this paper, the PDE method will be adopted to show that a direct and simple 
analysis leads to the closed form solutions. The method employs symmetry 
properties of the Black-Scholes (B&S) PDE and requires little more than the well-
known basic European vanilla option solutions.   
 
2. Pricing of simple contingent claims 
 
2.1 Asset Price Dynamics and Ito Process  
 
The dynamics of stock price S are represented by the following Ito process with a 
drift rate of Sµ and variance rate of :  22Sσ
 

SdXSdtdS σµ +=       (1.1) 
 
divide both sides by S, to obtain the following stochastic differential equation (SDE): 
 
  dXdtSdS σµ +=/       (1.2) 
 
This process of stock prices, known also as the geometric Brownian motion, can be 
written in discrete time setting as 
 
   

dttSS ∆+∆=∆ σεµ/       (1.3) 
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Where ε is a random sample from distribution with zero mean and a unit standard 
deviation. If we set 0=σ , the term involving dX in equation (1.2), would drop out 
and we are left with ordinary differential equation (ODE) 
 

dtSdS µ=/  or SdtdS µ=/   
 

Where µ  is constant this can be solved exactly to give exponential growth in the 
value of the asset, i.e. 
 
  )](exp[ 00 ttSS −= µ  
 
The random term dX  from equation (1.2) is known as a Weiner process which has 
the properties defined below. The model has the stock price growing at a constant 
rate µ , with random fluctuations superimposed. These fluctuations are proportional 
to the standard deviation of the asset price and are dependant on standard normal 
random variable. This type of process is known as Weiner process.  
 
Definition 1.1 A stochastic process X is called Weiner process if the following hold.1  
 
1. W(0) = 0  
2. The process W has independent increments, i.e. if r < s ≤ t < u then  
 W(u) - W(t) and W(s) -W(r) are independent stochastic variables. 
3. For s < t the stochastic variable W(t) - W(s) has a Gaussian distribution  
 ).,0( stN −  
4.    W has continuous trajectories  
 
 
We can write dX  as 
 
  dtdX φ=  
 
where φ  is a random variable with  and a probability density function 
given by 

)1,0(~N

 

  
2

2
1

2
1 φ

π

−
e ,  for   ∞<<∞− φ     (1.4) 

       
Define the expectation operator ξ by  
 

  ∫
∞

∞

−= ,)(
2
1(.)][

2

2
1

φφ
π

ξ φ deFF     (1.5) 

 
For any function F, then 
 
  0][ =φξ  and       1][ 2 =φξ  

 
                                                           
1 Most authors would use the letter W to associate it with the Weiner process.  

© YieldCurve.com   Page 4 of 28 



 
It follows that from equation 1.2, the expectation and variance of dS can be written as 
 
   

dtSdXSdSdSdSVar
SdtSdXSdtdS

2222222 ][][][][
][][

σσξξξ
µσµξξ

==−=

=+=
 

   
2.2 Ito's Lemma  
 
Ito's Lemma is an important result about the manipulation of random variables. 
While Taylor's theorem allows one to manipulate functions of deterministic 
variables, Ito's Lemma can be applied to manipulate functions of random variables. It 
relates the small change in a function of random variable to the small change of in 
the random variable itself.  
 
We will use the following Ito's multiplication table2  
 
  (dX)2 =  dt, 
  dt.dX = 0, 
  (dt)2 = 0, 
 
If f(S) is a smooth function of S and we vary S by small amount dS, then the function  
f will also vary amount small amount df. Using the Taylor series expansion we can 
write the change of the function  f  as:  
 
 

  ...,
2
1 2

2

2

++= dS
dS

fddS
dS
dfdf     (1.6) 

 
Since dS is given by equation (1.1), we square it to find that  
 
  22 )( SdXSdtdS σµ +=     

  2222222 2 dtSdtdXSdXS µσµσ ++=    (1.7) 
 
the first term is the largest for small dt and dominates the other two terms. We are 
then left with 
 
  ...2222 += dXSdS σ  
 
Since dX2 → dt,  
 
  .222 dtSdS σ=  
 
 
 
 
 
                                                           
2 See Bjork (1998) for technical details of these results.  
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We now substitute this result and equation 1.1 into 1.6, such that we find: 
 

 dtS
dS

fdSdXSdt
dS
dfdf 22

2

2

2
1)( σσµ ++=   

  

 dtS
dS

fdSdX
dS
dfSdt

dS
dfdf 22

2

2

2
1 σσµ ++=  

 

 dX
dS
dfSdtS

dS
fdS

dS
dfdf σσµ ++= )

2
1( 22

2

2

   (1.8) 

 
This is Ito's Lemma relating the small change in a function of random variable to the 
small change in the variable itself.  The first component of the right hand side 
equation is deterministic component of the change in the function  f  and is 
proportional to dt. The second component is a random component and is proportional 
to dt.  
 
The result (1.8) can be extended to a function of two variable which entails the use of 
partial derivatives since there are two independent random variables, i.e. S and t. We 
can expand  f(S + dS, t + dt) in a Taylor series about (S, t) to get  
 
  

 ...,
2
1 2

2

2

+
∂
∂

+
∂
∂

+
∂
∂

= dS
S

fdt
t
fdS

S
fdf  

  
 

dX
S
fSdt

t
fS

S
fS

S
fdf

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= σσµ )
2
1( 22

2

2

  (1.9)  

 
 
3.1 The Black -Scholes Formulation of Option Pricing  
 
We illustrate how to use the riskless hedging principle to derive the governing partial 
differential equation for the price of European call. The derivation follows the 
approach used by Black and Scholes in their seminal paper (1973). They made the 
following assumption in the financial market: 
 
(i) trading takes place continuously in time; 
(ii) the riskless interest r is known and constant over time; 
(iii) the asset pays no dividend; 
(iv) there are no transaction costs in buying or selling the asset or the option,                                      
 and no taxes; 
(v) there are no riskless arbitrage opportunities; 
(vi) short selling is permitted and the assets are divisible. 
 
Let V(S, t) be the value of an option whose value depends on both S and t. Using Ito's 
Lemma, equation (1.9), the random walk followed by V can be written 
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dX
S
VSdt

t
VS

S
VS

S
VdV

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= σσµ )
2
1( 22

2

2

  (3.1) 

 
If we now construct a portfolio of consisting a long position of the option and a short 
position of the underlying asset )( ∆− , the value of the portfolio is 
 
  SV ∆−=Π        (3.2) 
 
The change in the portfolio in one-time step is  
 
  dSdVd ∆−=Π        
 

Let;   
S
V
∂
∂

=∆  

 
Putting (1.1), (3.1) and (3.2) together, the change in the portfolio can be written as 
 

dX
S
VSdt

t
VS

S
VS

S
Vd

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=Π σσµ )
2
1( 22

2

2

 

  
 )( SdXSdt σµ +∆−  

SdXSdtdX
S
VSdt

t
VS

S
VS

S
V σµσσµ ∆−∆−

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= )
2
1( 22

2

2

 

 
Since 
 

 
S
V
∂
∂

=∆    

 

)()
2
1( 22

2

2

dX
S
VSdt

S
VSdX

S
VSdt

t
VS

S
VS

S
Vd

∂
∂

−
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=Π σµσσµ

 
by simply rearranging the above equation, we have 
 

dt
t
VS

S
VdX

S
VSdX

S
VSdt

S
VS

S
VSd )

2
1()()( 22

2

2

∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

=Π σσσµµ

 
 
The first two terms from the right hand side of the equation cancels each other and 
the random component in the equation is eliminated. This results in a portfolio whose 
increments is wholly deterministic: 
 

dtS
S
V

t
Vd )

2
1( 22

2

2

σ
∂
∂

+
∂
∂

=Π     (3.3) 
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Note the uncertainty due to dX is cancelled out and u, the premium for risk (return on  
S), is also cancelled out. Not only that the term Πd has no uncertainty, it is also 
preference free and not dependant on u, a parameter controlled by investors risk 
aversion. If the portfolio value is fully hedged, then no arbitrage implies that it myst 
earn only risk free rate of return. We then have  
 

  dtS
S
V

t
Vdtr )

2
1( 22

2

2

σ
∂
∂

+
∂
∂

=Π     (3.4) 

 
using equation (3.2) 
 

  dtS
S
V

t
VdtSVr )

2
1()( 22

2

2

σ
∂
∂

+
∂
∂

=∆−  

 
since  
 

 
S
V
∂
∂

=∆  

 

  dtS
S
V

t
VdtS

S
VVr )

2
1()( 22

2

2

σ
∂
∂

+
∂
∂

=
∂
∂

−    

 

  dtS
S
V

t
Vdt

S
VrSrV )

2
1()( 22

2

2

σ
∂
∂

+
∂
∂

=
∂
∂

−  

 
dividing both sides by dt and rearranging the equation, we have 
 

  
S
VrSS

S
V

t
VrV

∂
∂

+
∂
∂

+
∂
∂

= 22
2

2

2
1 σ  

 
finally 
 
   

  0
2
1 22

2

2

=−
∂
∂

+
∂
∂

+
∂
∂ rV

S
VrSS

S
V

t
V σ    (3.5) 

 
This is the Black-Scholes partial derivative equation and any derivative  security 
whose price depends only on the current value of S and on t, and which is paid for 
up-front must satisfy the Black-Scholes equation.  The most frequent type of partial 
differential equation in financial problems is the parabolic equation. Equation (3.5) is 
called backward parabolic since the equation is linear and the signs of these 
particular derivatives are the same.  
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The price of particular derivative security is obtained by solving Equation (3.5) 
subject to the appropriate auxiliary conditions (terminal payoff) for the 
corresponding derivative security. The solution of the Black-Scholes equation with 
different auxiliary conditions can then provide valuation formulas for different types 
of derivative securities.  
 
The term dX disappear from the PDE, which means there is no uncertainty. While the 
stock price evolves in an uncertain manner, when we value derivatives with respect 
to stock price, this uncertainty no longer exist in the pricing formula for this 
derivative.  
 
The term u which is the expected rate of return on the stock also disappear from the 
PDE. The expected return is affected by risk preference. The more risk averse the 
investor, the smaller the expected return. Given that the expected return does not 
appear in the pricing formula for derivatives, valuation of derivatives in this 
framework is preference free. The solution to the differential equation is therefore the 
same in a risk-free world as it is in the real world.  Hence, this type of valuation 
method are often called, risk neutral valuation relationship (RNVR).  
Application of RNV sets the expected growth rate of stock equal to risk free interest 
rate, then discount expected payoff of option at risk free rate.  
 
There are many solutions to (3.5) that correspond to different derivatives,  f , with 
underlying asset S . In other words, without further constraints, the PDE in (3.5) does 
not have a unique solution.  
 
The particular security being valued is determined by its boundary conditions of the 
differential equation. In the case of a European call, the value at expiry 

)0,(),( ESTSc −=  serves as the final condition for the Black-Scholes PDE.  
 
 
3.2  Lognormal property and stock price process 
 
Black-Scholes (1973) assume that there are two fundamental assets: a bond with a 
price B(.) and a stock with a price S(.). The price of the bond and the stock are 
assumed to grow as follows for any Tt ≤≤0 : 
 
  ),exp()( rttB =   and 

  
⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −= )(

2
1exp)0()( 2 twtStS σσµ ,  

where r, u, and σ  are constants, and w(t) is a standard Brownian motion3.  
The ratio of S(T) to S(t) can be written: 
 

                                                           
3 See Harrison (1985) for mathematical details of Brownian motion.  Brownian motion is named after 
the botanist Robert Brown. Brown noticed in 1827 that pollen exhibits random motion when 
suspended in water. The mathematics of this "Brownian motion" did not come until Bachelier (1900) 
and Einstein (1905).  
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⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −=

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −=
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2
1exp)0()(

)(
2
1exp)0()(

2

2

twtStS

TwTSTS

σσµ

σσµ
 

   

  (
⎭
⎬
⎫

⎩
⎨
⎧

−+−⎟
⎠
⎞

⎜
⎝
⎛ −= )()()(

2
1exp 2 twTwtT σσµ )   (3.6) 

 
Taking log of both sides of the above equation, we get 
 

  ( ))()()(
2
1

)(
)(ln 2 twTwtT

tS
TS

−+−⎟
⎠
⎞

⎜
⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
σσµ  

 
the increment w(T) - w(t) is distributed normal N(0, T-t), so it follow that 
 

  ( )⎟
⎠

⎞
⎜
⎝

⎛
−−⎟

⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ tTtTN
tS
TS

σσµ ),(
2
1~

)(
)(ln 2   (3.7) 

 
From equation (3.6) it can also be seen that 
 

( ) ( ) ( ))()()(
2
1)(ln)(ln 2 twTwtTtSTS −+−⎟

⎠
⎞

⎜
⎝
⎛ −+= σσµ   

 
and, therefore, that 
 

  ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
−−⎟

⎠
⎞

⎜
⎝
⎛ − tTtTNTS σσµ ),(

2
1~)(ln 2  

 
from equation (3.6), the terminal stock price S(T) may be written as follows: 
 
 

  ( )
⎭
⎬
⎫

⎩
⎨
⎧

−+−⎟
⎠
⎞

⎜
⎝
⎛ −= )()()(

2
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⎭
⎬
⎫

⎩
⎨
⎧

+−⎟
⎠
⎞

⎜
⎝
⎛ −= WtT σσµ )(

2
1exp 2   (3.8) 

 
where  is distributed as normal ( )()( twTwW −≡ ) ),0( tTN −  under the usual 
probability measure.  
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As mentioned above the price of European option at time t can be found by 
discounting the expected payoff of the call option (Where E* denotes expectation 
taken under the risk-neutral probability measure). The expectation is taken 
conditional on information at time t [that is, conditional on S(t)]: 
 
   
  ( )[ ])()0,)(max)( *)( tSKTSEetc tTr −= −−   (3.9) 
 
Now, substituting equation (3.8) into (3.9): 
 

.)()()(
)(

2
1

)(
2

dwwfKetSetc Ww
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  (3.9a) 

 
)(wfW is the probability density function (pdf) of w. With  ),,0(~ tTNW −  it 

follows that the probability density function of W is given by 
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Substitute this for in equation (3.9a) to get the call option value: )(wfW
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To simplify, let tTw −= ε  so that 
tT

dwd
−

=ε  and the call option value becomes 

ε
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let 0ε  be such that 0)(
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The formula for c(t) simplifies slightly because the integrand4 is identically zero 
when 0εε <  
   

 ε
π

ε

εε

εσσµ

deKetSetc
tTtT

tTr
2

0

2

2
1)(

2
1

)(

2
1)()(

−∞+

=

−+−⎟
⎠
⎞

⎜
⎝
⎛ −

−− ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

 
We may split the integrand (and hence the integral ) into two components: 
 
 

ε
π

ε

εε

σεσ
deetSetc

tTtTrtTr
2

0

2

2
1

))(
2
1

()(

2
1)()(

−∞+

=

−+−−−− ∫=  

 

 ∫
∞+

=

−−−−
0

2

2
1

)(

2
1

εε

ε
ε

π
deKe tTr  

 
 
Collect terms and simplify: 
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The exponent in the integrand of the first term is scaled perfect square satisfying  
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where tT −−≡ σεε '  .  Now substitute this into the first integral to simply the 
expression for c(t): 
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4 The integrand is that part that of the integral that falls between the and the ∫ εd  
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The integrands are normal standard pdf's. Therefore, the integrals involve normal 
standard normal cdf's. The option value c(t) may now be written in terms of the 
cumulative standard normal function N(.) as follows: 
 
 
 [ ] [ ].)(1)(1)()( 0

)(
0 εσε NKetTNtStc tTr −−−−−= −−  

 
From the property of the cumulative standard Normal function: 

)()](1[ zNzN −=−  This may be used to simplify c(t):  
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By algebraic manipulations, one can show that if   
 

 ,)(
2
1

)(
ln1 2

0
⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= tTr
tS

K
tT

σ
σ

ε  

then 
 

 ,
)(

2
1)(ln 2

0 tT

tTr
K
tS

−

−⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛

=−
σ

σ
ε  

and 
 

 ,
)(

2
1)(ln 2

0 tT

tTr
K

tS

tT
−

−⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛

=−+−
σ

σ
σε  

 
 
 
If we label the latter two terms and d2 and d1 respectively, you get the Black-Scholes 
formula for the price of a standard European call on a non dividend-paying stock: 
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tTdd −−−= σ12       (3.9.1b) 
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The above call price formula can be interpreted using the language of probability. 
First,  is seen as the probability of the call being in-the-money at expiry and 
so  can be interpreted as the risk neutral expectation of the payment made 
by the holder of the call option at expiry on exercising the option. Second, 

is the risk neutral expectation of the asset price at expiry 
conditional on the call being in-the-money. Hence, the expectation of the call value 
at expiry is  

)( 2dN
)( 2dKN

)()( 1
)( dNetS tTr −

 
   ),()()( 2

)(
1 dKNedNtS tTr −−−=

 
which is then discounted by the factor )( tTre −−=  in the risk neutral world to give the 
present value of the call.  
 
 
  
4.1 Barrier Options 
 
Options with the barrier feature, commonly called barrier options, are considered to 
be one of the simplest types of path-dependent options. The unique feature is that the 
payoff depends not only on the final price of the underlying asset but also on whether 
or not the underlying asset price has reached (one-touch) some barrier level during 
the life of the option. An out-barrier option (knock-out option) is one where the 
option is nullified prior to expiration if the underlying asset price touches the barrier. 
The option holder may be compensated by a rebate payment for the cancellation of 
the option. An in-barrier option (knock-in) option is barrier option type which comes 
into play if the asses price hits or crosses the predefined barrier level. When the 
barrier is approached from below, the barrier option is called an up-option; otherwise 
it is called down-option. One can identify eight type of European barrier options, 
such as down-in calls, up-in calls, down-out calls, up-out calls. And similar four 
types of options for the European barrier put options.  
 
All these options are called standard or vanilla barrier options. The attractiveness of 
barrier options is that they are cheaper than their corresponding vanilla options, as 
the sum of the premiums of a knock-in and its corresponding knock-out is always the 
same as the premium of their corresponding vanilla option if there are no rebates.    
 
4.2 Vanilla barrier options 
 
Another name for barrier type options is also a trigger option. This is because the 
payoff depends critically on whether a pre-specified barrier or a trigger is touched 
during the life of the option. If the barrier is breached during this time, the holder is 
entitled to receive a European option. Otherwise, the holder gets a rebate at the 
maturity of the option. This kind of barrier is known as knock-in barrier option, or 
simply knock-in. Given the underlying asset price, the barrier level can be placed 
above of below it. If the barrier is below the underlying price, the knock-in option is 
called a down knock-in option (DI - for down and in option). The payoff of a down 
knock-in option (PDI) can be formally given as 
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[ ] HtSKtSPDI >−= )(|0,)(max{ * ωω  

and ,)( HTS ≤  for some },*tTt ≤<    (4.2a) 
 
or 
 

)(τRmPDI =  if S(t) > H and S(T) > H, for all ,*tTt ≤<  (4.2b)  
 
 
Where  are the current and expiration time of the option respectively; H is 
the knock-in boundary of the option or the constant barrier level. K is the strike price 
of the option;  

*,, tandt

ω  is a binary operator (1 for a call and -1 for a put).  )(τRm  is the 
rebate of the barrier option paid at maturity if the barrier is not touched.  
 
Below we also so define the payoff for remaining vanilla barrier types such as up-an-
in (PUI), down-and-out (PDO). For up-and-out (PUO) payoff see Zhang (1998).  
 
The payoff of an up-and-in barrier option (PUI) is given formally as; 
 
 

[ ] HtSKtSPUI <−= )(|0,)(max{ * ωω  
 
  and ,)( HTS ≥  for some },*tTt ≤<    (4.2c) 
 
or 
 

)(τRmPUI =  if S(t) < H and S(T) < H, for all ,*tTt ≤<   
 
The Payoff of a down and knock out barrier option or simply down-and-out is given; 
 
 
  [ ] HtSKtSPDO >−= )(|0,)(max{ * ωω  
 

and ,)( HTS >  for some },*tTt ≤<    (4.2c) 
 
or  
 
 )(TRPDO =  if S(t) > H and S(T) ≤ H, for all ,*tTt ≤<  
 
R(T) is in this case also the rebate function which is time dependant. R(T) is most 
often an increasing function of time starting from zero, or R'(T)> 0 and R(0)=0.  The 
rebate defined in (4.2c) is called non-deferred rebate, implying that the rebate is paid 
as soon as the barrier is reached. The rebate can also be deferred, that is, the rebate 
payment can be postponed until maturity.    
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4.2.1 Path Independence and Path Dependence 
 
A security is path-independent if its value at a given point in time depends on the so-
called state-of-the-world at the time, and now on how the world evolved to that state. 
For example, the premium of European option depends on the price and the return 
volatility of the underlying at a given point in time, but is independent of the actual 
price history that transpired prior to that time. Barrier options are dependant on price 
history for determining if a barrier has been hit or not. For an out-option, this type of 
dependency is theoretically no different than the path-dependency inherent in the 
early exercise of an American option. A non-linear barrier option exist for an 
American option, defined at time t by the critical price St at which the investor should 
exercise. In practise this barrier is subjective, to the extent that the investor needs to 
specify volatility before the American barrier can be identified. Also, the rational 
investor would exercise, but is not required to do so, whereas the breaching of the 
barrier triggers a contractual provision in a knock-out or knock-in option.  
 
Financial engineers are concerned with yet another type of path dependence - 
whether and how backward recursion can be used for pricing. Backward recursion 
refers to the methods such as Cox-Ross-Rubinstein. This is of interest because 
backward recursion is flexible and efficient when compared to Monte Carlo 
simulations. In order to use backward recursion one requires the security (contingent 
claim) being priced be path-independent (in a weak sense). Fortunately, barrier 
options are bath-independent in this sense 
 
 
4.3 Reflecting barrier 
 
A Brownian motion with reflecting barrier is also called Brownian motion reflected 
about some particular point. A Brownian motion X(t) reflected about the line x = b is 
given as follows.  
 
 

  for   )()(
~

tXtX = bTt <
 )(2 tXb −=  for  bTt >

Simulated asset  price 

60.00

80.00

100.00

120.00

140.00

 
Figure 1.1 Simulated asset prices with a fixed barrier level of 115. 
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The well-known result abut the reflecting barrier is the reflection principle which 
states that for every sample path with X(T) > b there are two sample paths )(TX  

and  with the same probability of occurrence. Because of the symmetry with 
respect to b of a Brownian motion 

)(
~

TX
)(tX  starting at b, the "probability" of doing this 

is the same as the "probability" of travelling from b to the point 2b - X(t). The reason 
for this is that, for every bath which crosses level b and is found at time t at a point 

below b, there is a shadow path  obtained from the reflection about the level b 
which exceeds this level at time t, and these two paths have the same probability. The 
actual probability for the occurrence of any particular path is zero. With the 
argument stated above, we can write the equation of the reflection principle as 
follows:  

)(
~

tX

  [ ] [ ] [ ],)()(,)(, btXPbtXtTPbtXtTP bb >=><=<<  
 
Where  stands for the time when the reflecting barrier b is first touched and P is 
the probability.  The reflection principle can be used to find the first passage time. 
The solution of the density functions for the Brownian motion with a reflecting 
barrier can be found in several text books in financial mathematics

bT

5. 
 
 
4.4.1 Unrestricted distribution and absorbing barrier 
 
Let g stand for the annual continues dividend yield on the underlying asset. The 
stochastic process which governs the underlying asset price movement given in (1.1) 
becomes  
 
  ),()( tSdzSdtgdS σµ +−=  
 
where all the parameters are the same as equation (1.1) except for incorporating the 
continues dividend payout. The solution to the above SDE is given below 
 
   
  [ ],)(exp)( τσττ wvSS +=  
 
where ,* tt −=τ  [ ]*,tt stand for current time and expiration time of the option, 
respectively,  ,2/2σ−−= grv  and )(τw is standard Gauss-Weiner process (note 
here that we have changed the notation slightly).  
 
We know that [ )/)(ln SSX ]ττ =  is the log-return of the underlying asset, then the 

density function of  is normally distributed with mean τX τv and variance .2τσ  its 
pdf is then given by: 
 

                                                           
5 For example, see: Yue-Kuen Kwok, Mathematical Models of Financial Derivatives (1998) 
Also, see: Peter James, Option Theory (2003) 
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⎤
⎢⎣

⎡ −
−=

τσ
τ

πτσ
vxxf    (4.2.1) 

 
Below we provide the result from Cox and Miller (1965) for the density function of a 
Brownian process with an absorbing barrier. An absorbing barrier is a barrier which 
upon touching, all the particles vanish.  
 

 .
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  ⎥⎦

⎤
⎢⎣

⎡ −−
−−

τσ
τσ

2

2
/2

2
)2(exp

2 vaxe av  for x < a,   (4.2.1a) 

   
 
 
4.4.2 Restricted Distributions 
 
From the specification of the payoff of a brier option, we know that in order to price 
it, we certainly need another density function conditioned on whether the barrier is 
reached during the life of the option. Define: 
 
  [ ]{ },,|)(max ** ttssSM t

t ∈=     (4.3a) 
 
and  
 
  [ ]{ },,|)(min ** ttssSmt

t ∈=     (4.3b) 
 
 
where Xx∈  stands for that x belongs to X; [ ]*,tt  stands for the set of real numbers 
starting from t and ending at  t* .  max and min represent the functions giving the 
maximum and the minimum of a set of numbers, respectively.  
 
The two variables given in (4.3a) and (4.3b) are the maximum and minimum of all 
underlying asset prices  within the life of the option. We can express these in terms 
of log-returns: 
 
 
  and          (4.3c) )/ln( * SMY t

t=τ )/ln( * SMy t
t=τ

 
let  stand for the time the underlying asset price first reaches an up barrier U. The 
following always hold: 

aT
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  ),()()( * aYPUMPTP r
t
trar <=<=> ττ    (4.4a) 

and  
 
  ),()()( * aYPUMPTP r

t
trar ≥=≥=≤ ττ    (4.4b) 

 
Equation (4.4a) shows that the barrier is never hit within the life of the option since 
the first time barrier is breached is after the expiration time of the option. This is 
equivalent to the fact that the maximum value of the underlying asset price within the 
life of the option is always below the barrier in a probabilistic sense. Equation (4.4b) 
is the complement of (4.4a), and implies that the barrier is touched within the life of 
the option since the first time the barrier is hit is during the life of the option.  
 
The joint-cumulative distribution between the log-return of the underlying asset and 
the transferred maximum given in (4.3c) is given as follows [see Harrison (1985)] for 

yx : :0≥y   
 

 ,2),(
2/2 ⎟

⎠
⎞

⎜
⎝
⎛ −−
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⎞

⎜
⎝
⎛ −

=≤≤
τστσ

σ
ττ

vtyxNevtxNyYxXF yv  (4.5) 

 
where N(.) is the cumulative function of a standard normal distribution. The joint-
cumulative function in (4.5) is equivalent to the following 
 
 

 ,2),(
2/2 ⎟

⎠
⎞

⎜
⎝
⎛ −−

−⎟
⎠
⎞

⎜
⎝
⎛ −

=<≤
τστσ

σ
ττ

vtyxNevtxNyYxXF yv  (4.5a) 

 
Equation (4.4a) and (4.5a) together imply that (4.5a) is the cumulative function of the 
log-return of the underlying asset conditional on the fact that the barrier is never 
touched within the life of the option. Differentiating (4.5a) with respect to x yield the 
density function of the log-return of the underlying asset conditional on the fact that 
the barrier U is never touched within the life of the option.: 
 
    (4.5b) ),2()()|(

2/2 axfexfaYx av −−=< στ
τφ

or 

)2()()|(
2/2

axf
S
UxfaYx

v

−⎟
⎠
⎞

⎜
⎝
⎛−=<

σ

τφ  for x < a,  (4.5c) 

and  
 
  0)|( =< aYx τφ  for x≥ a, 
 
where f(x) is the unrestricted density function of the log-return of the underlying 
asset given in (4.2.1). The restricted density function given in (4.5b) or (4.5c) is 
exactly the same as the solution to the Brownian motion with an absorbing barrier a 
> 0 given in (4.2.1a). 
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The complement of being always below the barrier is not always being above or at 
the barrier, because it is possible that the barrier is reached and the price ends up 
below. The density function that the barrier is touched can be obtained from the 
following identity.  
 
  )()|()|( xfaYxaYx =<+≥ ττ φφ    (4.5d) 
 
 This equation can be interpreted as the summation of the probability when the 
barrier is touched and the probability when the barrier is never touched within the 
live of the option, and this is the same as the unrestricted density given in (4.2.1a).  
 
 
4.5.1 Distribution of the first passage time 
 
The first passage time to a particular point on the path of the underlying asset price is 
the first time that this particular point is first reached. The joint probability that           
x = y = a > 0  for an up-barrier cab be obtained using (4.4a) and (4.5) 
 

),(),( τ>≤=≤≤ attt TaXPaYaXP  
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σ vtaNevtaN av   (4.6) 

 
if the drift term ,02/2 ≥−−= σgrv the density function of the first passage time 
from zero to the transferred barrier point 0)/ln( >= SUa  can be obtained by 
differentiating (4.6) with respect to the time to maturity.  
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)(exp

2 σπσ
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equation (4.6a) is the distribution of the first passage time.  
 
 
5.1 Pricing standard barrier options 
 
One of the oldest barrier option types such as down-and-out call options were first 
made available in the U.S. market from 1967. The corresponding valuation formula 
for these options was driven by Merton (1973). A decade later Bergman (1983) 
developed a framework for pricing path-dependant claims such as barrier options, 
and Cox and Rubinstein (1985) used their down-and-out formula to price fixed 
income securities with embedded characters. Rubinstein and Reiner (1991) also 
contributed detailed results for all barrier option types with the assumption that the 
underlying asset price follows lognormal process.   
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The expected payoffs of in and out barrier options can be calculated in the same way 
as in vanilla options with the only exception that the restricted density function 
shown above is used. Using a risk-neutral evaluation relationship, one can obtain 
barrier option prices by discounting the expected payoffs at the risk-free rate of 
return. The barrier option is however also affected by the relative magnitude of the 
strike price and the barrier level. For a down-and-in call with a strike price K greater 
than the barrier level H and without any rebate, the value of the call can be found by 
integrating the payoff of a vanilla call option with the restricted density function for 
all possible underlying asset price starting from the strike price K to infinity.  
 
If however the strike price is below or lower the barrier, the payoff of the down-and-
in call barrier option includes two parts: the integration of the payoff function of a 
vanilla call option with the restricted density functions given in (5.1a) for all possible 
underlying asset prices starting from the barrier H = L to infinity, and the integration 
of the same payoff function with the density function given in (5.1b) for all S starting 
from the strike price K to the barrier H = L.  
 

)2()2()|(
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2
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/ axf
S
LbxfebYx

v
bv −⎟

⎠
⎞

⎜
⎝
⎛=−=≤

σ
σ

τφ  for x > b (5.1a) 

and  
 
 )()|( xfbYx =≥τφ  for x ≤ b,     (5.1b) 
 
where  b = ln(L/S) and L stands for a down-barrier L < S. (5.1a) is the restricted 
density function of the underlying asset log-return under the condition that the down-
barrier is touched within the options lifetime.          
 
 
5.2 Down-and-in barrier call option  
 
The payoff of a down-an-in barrier call option can be divided in two parts; one part 
including the payoff of the corresponding vanilla option if the barrier is reached any 
time within the life of the option, and the rebate if the barrier is never reached. 
Within the life of the option. Lets first consider the case where the strike is greater 
than the barrier level ( K > H ). The value of down-and-in call option (VDIC) 
without any rebate if the barrier is reached is readily obtained by discounting it is 
expected payoff given in equation (4.2a) at the risk-free rate of return: 
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where  
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τσ+= ),(),(1 KSdKSd bsbs  
 

bsbs dd 1,    are an extended version Black-Scholes parameters we have already seen 
above. We can also extend the Black-Scholes solution for the call price and use this 
formula to give an alternative compact formula for the down-and-in barrier call 
option; 
 

[ ] [ ],),(),(),( 1 KSdNKeKSdNSeKSC bs
r

bs
g

bs ωωωω ττ −− −=  
 
The value of down-and-in call barrier option can then also be written in form 
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    (5.2) 

 
The formula (5.2) gives the value of a down-and-in call option without any rebate 
when the strike price is greater than the barrier. In the case when the strike is lower 
than the barrier, the whole integration ranges must then be divided into sub-ranges. 
For example, the integration range (K , ∞ ) into (K, H) and (H, ∞ ) because the 
corresponding density functions are different into these sub-ranges.  For the range    
(H, ∞) we can obtain the value of the option in this up portion (VDNUP)  
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Where Cbs is again the extended Black-Scholes formula given above. Since the range 
(K, H) is equivalent to the difference of the two ranges (-∞, H) and (-∞, K), we can 
obtain the value of the down-and-in call for the range (K, H) 
 
 

[ ],),()(),(),( HSdNeKHHSPKSPVDNIC bs
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where  
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),( KSPbs  is the Black-Scholes formula for vanilla European put option. The value 
of the down-and-in option without any rebate is therefore the sum of the values of the 
options given in (5.3) and (5.4). From the above analysis, the pricing formula of a 
down-and-in option depends on whether K > H or K < H. In order to obtain a general 
formula to cover both situations, one can use an indicator BH>K which equals one 
when H > K, and zero if otherwise. Given the above indicator, we can express the 
price of down-and-in call option (DINC) without rebate: 
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[ ]{ } ,),()(),(),( KHbs
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bsbs BHSdNeSHHSPKSP >

− −−+−+ τ  (5.6) 
 
 
Where max (H, K) is the function which gives the larger of the two numbers H and 
K, and other parameters are the same as in (5.3) and (5.4). When K > H, the pricing 
formula given is (3.6) becomes the same as (5.2) because max (H, K) = K, and     
BH>K  = 0. We can also check when K < H, max (H, K) = H, BH>K = 1, the pricing 
formula (3.6) is the sun of the two pricing formulas given in (5.3) and (5.4) and the 
sum represents the value of the down-and-in call option when there is no rebate.  
 
 
We now continue to price down-and-call option by using numerical example and 
with the assumption that the down barrier is touched. This implies that the rebate is 
zero.  
 
To find the find the price of down-and-in barrier call option, consider the following 
parameter;  strike price K = £98, spot price = £100, barrier level of H = £95, interest 
rate r = 8%, the yield of the underlying asset g = 3% and volatility of the underlying 
asset = 20% 
 
Substituting S = £100, K = £98, H = £95, w = 0.20, r = 0.08, g = 0.03, and t = 0.5 
into (5.6) yields 
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Since K = £98 > £95 = H, the call option price BH>K=0. We can then find the down-
and-in call price from (5.6) as follows: 
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when the strike price K = £92, max (H, K) - max (95, 92) = £ 95,  BH>K=1, and all 
the terms in (5.6) and nonzero.   
 
Substituting S = £100, K = £92, BH>K= 1, sigma = 0.20, r = 0.08, g = 0.03 and t = 
0.50 into (5.6) yields: 
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Thus the value of the down-and-in call option is 
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the price of the down-and-in barrier call option can also be incorporated in the case 
when the barrier is never touched and the option pays some rebate.  (the present 
value of this rebate is given above). For compact solutions for all remaining types of 
barrier options can be found under Haug (1998). 

 
The value of the rebate at the option maturity can be obtained by integrating the 
restricted density function below from which the down barrier H = L to infinity. 
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The present value of the rebate is obtained by discounting (5.7) at the risk free rate r: 
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RBDI is the present value of the rebate for down-and-in call option. 
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The price of down-and-in call option (PDIC) can now be expressed using (5.6) and 
(5.8): 
 
   
   PDIC = DINC    +    RBDI 
 
Where RBDI and DINC are given in equations (5.6) and (5.8) respectively.  
 
 
To find the present value of the rebate when the rebate is paid £1.5 at maturity if the 
barrier is not touched within the live of the call option from the numerical example 
above, substituting  
 
Rm(0.5) = 1.5, S = £100, H = £95, sigma = 0.20,  r = 0.08, g = 0.03, and t = 0.50 
Into equation (5.8) yields 
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we can now find the price of the down-and-in call option when the rebate is paid £1.5 
at maturity if the barrier is not touched within the live of the option 
 
The down-and-in call option price with strike price K= 92  
 
= DINC(K = 92) + RBDI  =  4.862   +  0.449   = £5.312 
 
An important issue of pricing barrier options is whether the barrier crossing is 
monitored in continues time. Most models assume continues monitoring of the 
barrier. In other words, in the models a knock-in or knock-out occurs if the barrier is 
reached at any instance before the maturity of the contract, mainly because this leads 
to analytical solutions;  see for example Merton (1973), Heynen & Kat 
(1994a,1994b) and kunitomo & Ikeda (1992) for various formulae for continuously 
monitored barrier options under the classical Brownian motion framework; see Kou 
& Wang (2001) for continuously monitored barrier options under a jump diffusion 
framework.  
 
However in practice most, if not all, barrier options traded in markets are discretely 
monitored. In other words, they specify fixed times for monitoring of the barrier 
(typically daily closings).  
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Besides practical implementation issues, there are some legal and financial reasons 
why discretely monitored barrier options are preferred to continuously monitored 
barrier options.  For example, some discussions in trader's literature ("Derivatives 
Week", may 29th, 1995) voice concern that, when the monitoring is continuous, 
extraneous barrier breach may occur in less liquid markets while the major western 
markets are closed, and may lead to certain arbitrage opportunities.  
 
Although discretely monitored barrier options are popular and important, pricing 
them is not as easy as that of their continuous counterparts for three reasons. (1) 
There are essentially no closed solutions, except using m-dimensional normal 
distribution function (m is the number of monitoring points), which can hardly be 
computed easily if, for example m > 5; see Reiner (2000). (2) Direct Monte Carlo 
simulation or standard binomial trees may be difficult, and can take hours or even 
days to produce accurate results; see Broadie, Glasserman and Kou (1999). (3) 
Although the Central Limit Theorem asserts that, as m → ∞, the difference between 
continuously and discretely monitored barrier options should be small, it is well 
known in the traders literature that numerically the difference can be surprisingly 
large, even for large m.  
 
To give a feel for the accuracy of these models, see Table 1.1. This is reproduced 
with permission from Brodie, Glasserman and Kou (1997). The numerical results 
shown in Table 1.1 suggest that, even for daily monitored discrete barrier options, 
there can still be big differences between the discrete prices and the continuous 
prices.  
 
 
Table 1.1 
Up-and-out Call option price results, with m = 50 (daily monitoring) and following 
parameters: 
 
S(0) = 110 
K = 100 
σ = 0.30 per year 
r = 0.1, and  
T = 0.2 year, which represents roughly 50 trading days.  
 
 
 
  Barrier 

Continuous 
 Barrier 

Corrected 
 Barrier 

 
True 

Relative error
 

155 12.775 12.905 12.894 0.1 
150 12.240 12.448 12.431 0.1 
145 11.395 11.707 11.684 0.2 
140 10.144 10.581 10.551 0.3 
135 8.433 8.994 8.959 0.4 
130 6.314 6.959 6.922 0.5 
125 4.012 4.649 4.616 0.7 
120 1.938 2.442 2.418 1.0 
115 0.545 0.819 0.807 1.5 
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