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Abstract 
This paper surveys some of the main credit risk models within structural models and 
reduced-form models. In particular, it focuses on the Merton model and its extensions 
under the structural models. It also concentrates on intensity based models such as 
Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), and Duffie and 
Singleton (1998). Empirical results investigating the differences between market-quoted 
credit default swaps premium and model implied CDS premiums are presented. Finally, 
the Kettunen, Ksendzovsky, and Meissner (KKM) model (2003) is reviewed and 
implemented to compute credit default swap premium for a given set of data. From the 
existing research on credit risk models, reduced form models seems to be the preferred 
approach when pricing a firm’s risky debt or related credit derivatives. 
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Credit Risk Models and Valuation of Credit Default 
Swap Contract 
 
1. Introduction. 
 
Pricing credit derivatives and credit risk in general, is quite similar in technique to pricing 
traditional derivatives, such as interest rate swaps or stock options.  This paper focuses on 
the investigation on two general methods for valuing default risk claims and by extending 
these models to valuation of credit derivatives in particular default swap or credit default 
swap contracts (CDS). The models or approaches investigated are the structural and 
reduced form models. We will examine the suitability of these models to the pricing of 
credit protection in rapidly growing credit default swap market by identifying some of the 
key advantages and drawback.  
 
The following are some of the key questions that this paper is concerned to investigate. 
How is credit default swap priced?. Which model is most appropriate model to use for 
pricing implementations?. We will use reduced or intensity based model to implement 
pricing default swaps using corporate bond yields and solve for the default swap premium 
they imply. We compare these implied credit default swap premium to actual market 
CDS prices. Implied premium tend to be much higher than then the CDS prices quoted in 
the market. What accounts for these differences?. The differences are related to measures 
of Treasury special-ness, corporate bond illiquidity, and coupon rates of the underlying 
bonds, suggesting the presence of important tax related and liquidity components in 
corporate spreads. Also, both credit derivatives and equity markets tend to lead the 
corporate bond market.  
 
There are number of issues that may arise from the implementation when pricing the 
credit default swap, for example, what are the assumptions underlying the pricing 
model?. What are the implications for relaxing some of these assumptions? For example, 
we will assume no counter party default and that interest rate, default probabilities and 
recovery rates are independent. The one parameter necessary for valuing default swap 
that cannot be observed directly in the market is the expected recovery rate. Hull & White 
(2000) assume that the same recovery rate is used for estimating default probability 
densities and for calculating the payoff. As it happens there is an offset. As the expected 
recovery rate increases, estimates of the probability of default increase and payoff 
decrease1. The overall impact of the recovery rate assumption on the value of a credit 
default swap is generally fairly small when the expected recovery is in the 0% - 50% 
range.  
 
 
 
 
 
                                                 
1 See Appendix C for default probability term structures under various recovery rates and credit ratings.  
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1.1. Structural Models. 
 
Structural credit pricing models are based on modelling the stochastic evolution of the 
balance sheet of the issuer, with default when the issuer is unable to or unwillingly to 
meet its obligations. In this model the asset value of the firm is assumed to follow a 
diffusion process and default is modelled as the first time the firm's value hit a pre-
specified boundary. Because of the continuity of the process used, the time of default is a 
predictable stopping time. The models of Merton (1974), Black and Cox (1976), Geske 
(1977) Longstaff and Schwartz 1993 and Das 1995 are representatives of this approach.  
 
 
1.2  Reduced-Form Models/ Intensity Models 
 
In the intensity models the time of default is modelled directly as the time of the first 
jump of a Poisson process with random intensity. The first models of this type were 
developed by Jarrow and Thurnbull (1995), Madal and Unal (1998) and Duffie and 
Singleton (1997). Jarrow and Thurnbull assume default is driven by a Poisson process 
with constant intensity and known payoff at default. Duffie and Singleton (1997) model 
assumes the payoff when default occurs as cash, but denoted as a fraction (1-q) of the 
value of defaultable security just before default. This model was applied to a variety of 
problems including swap credit risk, two sided credit risk and pricing credit default swap, 
binary credit default swap and credit default swap option. Table 1.1 provides brief 
overview on the existing credit risk model’s main advantages as well as their limitations.   
 
Table 1.1 
Strengths and Drawbacks of Various Models for Default Risky Bonds and Swaps 
 
Model Advantages Drawbacks 
Merton (1974) Simple to implement Requires inputs from   

value of the firm.  
 
Default occurs only at the 
maturity of the debt. 
 
Information in the history 
of defaults and credit 
rating changes cannot be 
used. 
 

Longstaff and Schwartz 
(1995) 

Simple to implement. 
 
Allows for stochastic term 
structure and correlation 
between defaults and 
interest rates 

Requires inputs from   
value of the firm.  
 
Information in the history 
of defaults and credit 
rating changes cannot be 
used. 

 4



Credit Risk Models and the Valuation of Credit Default Swap Contracts 

 
Jarrow, Lando, and 
Turnbull (1997) 

Simple to implement. 
 
Can exactly match the 
existing prices of default-
risky bonds to infer risk-
neutral default 
probabilities of default and 
credit rating changes.  
 
Uses the information in the 
history of defaults and 
credit rating changes.  
 

Correlation not allowed 
between default 
probabilities and the level 
of interest rates.  
 
Credit spreads changes 
only when credit rating 
change.  

Lando (1998) Allows correlation 
between default 
probabilities and interest 
rates. 
 
Allows many existing term 
structure models to be 
easily embedded in the 
valuation framework.  

Historical default 
probabilities and credit 
rating changes are used 
under the assumption that 
the risk premiums due to 
defaults and rating changes 
are zero.  

 
 
 
Model Advantages Drawbacks 
Duffie and Singleton 
(1997) 

Allows correlation 
between default 
probabilities and interest 
rates. 
 
Recovery can be random 
and depend on the pre-
default value of the 
security 
 
A default free term 
structure model can be 
accommodated, and 
existing valuation results 
for default free term 
structure models can be 
readily used.  

Historical credit changes 
and defaults cannot be 
used.  

Duffie and Haug (1996) 
(swaps).  

Has all the advantages of 
Duffie and Singleton.  

Historical credit changes 
and defaults cannot be 
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ISDA guidelines for 
settlement upon swap 
default can be 
incorporated.  
 
 

used. 
 
Difficult for computational 
reasons especially for 
cross currency swaps if 
domestic and foreign 
interest rates are random 
or stochastic.  

 
    
Figure 1.1 illustrates the types of credit risk models available and the focus of this paper 
is the implementation of the asset value models and the intensity based models.  
 
Figure 1.1:  Credit Risk Models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jarrow/Lando
/Turnbull-
Model 
Duffie/Singl-
eton Model 

Credit Risk 
By Credit 
Suisse  
Financial 
Product 

Credit 
Portfolio 
view by 
McKinsey & 
Company 

Asset Value 
Models 

Macro Econ. 
Models 

Actuarial  
Models 

Intensity 
Models 

Portfolio 
Manager by 
KMV. 
Credit 
Matrics  

Credit Risk Models

 
2.1  Structural Credit Risk Models. 
 
2.1.1 Merton’s Model. 
 
The basic foundations of structural models have been laid in the seminal paper Merton 
(1974). Here it is assumed that a firm is financed by equity and single zero-coupon bond 
with notional amount or face value of K and maturity T. The firm’s contractual obligation 
is to repay the face value (K) of the debt to the bond investors at the maturity of the debt 
(T).  In the event of default, bond holders will assume ownership of the firm.  Hence the 
default time τ is a discrete random variable given by  
 

   ⎩
⎨
⎧
∞

<
=

.elseif
KVifT Tτ
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Figure 2.1 shows the triggering of default as soon as the stochastic path of the firm value 
crosses the default barrier which is the face value of the debt at any time between time 
zero and T. This however is an extension of Merton’s model which relaxes the 
assumption of default taking place only at maturity of the debt. Under Merton’s model, 
default cannot occur prior to the maturity of the debt. This means that default is only 
triggered if the asset value exceeds the total outstanding debt of the firm at time T.  
 
Figure 2.1  

 
The dynamics of the firm value under the probability measure ΡI  follows a geometric 
Brownian motion: 
 

  
,0, 0 >+= VdWdt

V
dV

t
t

t σµ
 

  ,0, 0 >+= VdWVdtVdV tttt σµ     (1) 
 
Where Rεµ is a drift parameter, ,0>σ is a volatility parameter for the firm, and  is a 
standard Brownian motion. The solution for equation (1) is given by

tW
2:  

 

  tt WtVV σσµ +−= )
2
1exp( 2

0  

 
We apply Ito’s formula and the above stochastic differential equation (SDE) for the firm 
and formulate the Black & Scholes differential equation. 
Ito’s Lemma: let  be twice-differentiable function of t and of the random process 

 given in (1) with well behaved drift and diffusion parameters, 
)( tVF t

tV ,µ and σ 3. Then we 
have 

                                                 
2 Joshi M.S. “The concepts and practice of mathematical finance” (2003). Cambridge University Press 
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Using Ito’s multiplication rules, the term  can be reduced to2

tdV 4:  
          (3) dtVdV tt

222 σ=
 
By substituting 1 and 3 into equation 2 and incorporating the portfolio replication, one 
can drive for the Black & Scholes partial differential equation whose solution will depend 
on the specified boundary condition5: 
 
   

  0
2
1

2

2
22 =−
∂
∂

+
∂
∂

+
∂
∂ RF

V
FV

t
FRV

V
F

t
tt
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TW  is normally distributed with zero mean and variance T, default probabilities p(T) are 
given by 

  ⎟
⎠
⎞

⎜
⎝
⎛ −

=−<=<=
T
mTLNmTLWPKVPtp tt σ

σ log]log[][)(  

 

Where 
0V

KL= is the initial leverage ratio and N(.) is the standard normal distribution 

function such that  ∫ ∞−
⎟
⎠
⎞

⎜
⎝
⎛−=

x
dzzxN 2

2
1exp)(  

 
If at time T the firm’s asset value exceeds the promised payment K, the lenders are paid 
the promised amount and the shareholder receive the residuals asset value. In the even the 
asset value is less than the promised payment the firm defaults and the ownership of the 
firm will be transferred to the bond holders. Equity is worthless because of limited 
liability6. The value of the bond issue at time T is given by T

TB
 
   )

                                                                                                                                                 

,0max(),min( TT
T
T VKKVKB −−==

 
The above payoff is equivalent to of a portfolio composed of a default-free loan with face 
value K maturing at time T and a short European put position on the assets of the firm 
with strike K and maturity T. The value of the equity is equivalent to the payoff of a 
European call option on the assets of the firm with strike K and maturity T.  
 

 
3 This means that the drift and the diffusion parameters are not too irregular. Square integrability would 
satisfy this condition.   
4 See Bjork Tomas  “Arbitrage theory in continuous time”   (1998). Oxford University Press 
5 See Wilmott, Howison and Dewynne  “The mathematics of financial derivatives” (1995). Cambridge 
University Press 
6 See Table 2.1  
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Table  2.1 Payoffs at maturity 
 
  Assets Bonds Equity 

No Default        KVT ≥        K         KVT −  

Default        KVT ≤          TV               0
 
 
  ),,0max( KVE TT −=  
 
Pricing equity and credit risky debt reduces to pricing European options. Under the 
classical Black-Scholes setting with constant risk free rate, volatility and solving equation 
(4) by imposing suitable initial and boundary conditions, the equity value is given by the 
Black-Scholes vanilla call option formula:  
 
  )()exp()( 2100 dKNrTdNVE −−=      (5) 
Where   

  
T

Tr
V
K

d
σ

σ ⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛

=

2

0
1

2
1ln

      and    Tdd σ−= 12  

 
The value of the corresponding the defaulable bond is given by 
 
       (6) ),,,,()exp(0 rVTKPrTKBT σ−−=
 
Where P  is the Black-Scholes put option formula. The value of the put option is equal to 
the present value of the default loss suffered by bond investors. This is the discount for 
the default risk relative to the risk-free bond, which is valued at . This yields )exp( rTK −
 
      (7) )()exp()( 21000 dKNrTdNVVBT −+−=
 
Using equation (5) and (7), the market value of the firm is given by:  
   

)()exp()( 2100 dKNrTdNVV −−=  +  )()exp()( 2100 dKNrTdNVV −+−   (8) 
 
Both of the equity value and debt value will depend on the firm’s leverage ratio, equation 
(8) shows however that their sum does not depend on the firms leverage ratio. This result 
asserts that the market value of the firm is independent of its leverage, see Rubinstein 
(2003).  The risk neutral default probability can be expressed:  
 

  ( ) T
T

Tr
V
K

tp σ
σ

σ
−

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛

=

2

0 2
1ln

    (9) 
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This depends only on the leverage, L, the asset volatility σ ,  and maturity time of the 
debt, T.  
 
The credit spread is the difference between the yield on the defaultable bond and the yield 
of an equivalent default-free zero coupon bond. This is the access return demanded by 
bond investors to bear the potential default losses.  
 
Figure 2.2  Credit Spread Term Structure 

 
Term structure of credit spreads with different levels of volatilities                                                                                       
Source: Bloomberg L.P 

 
Since the yield on a bond with price satisfies; ),( TtY ),( Ttb
 
  ))(,(exp(),( tTTtyTtb −−=  
 
The credit spread  at time t for a maturity of T is given as:  ),( TtS
 

  ,,log(1),( tTB
tT

TtS T
t

T
t >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
β

    

 
Where  is the price of default-free bond maturing at time T. The term structure of 
credit spreads is the schedule of  against different maturities, holding t  fixed. In 
the Black-Scholes framework, we have  and we obtain the credit 
spread at time zero 

T
tβ

),( TtS
))(exp( tTrKT

t −−=β

 

 ( ) ( ) ,0,1log(1),0( 12 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−= TdNedN

T
TS rT

L
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which is a function of maturity T, asset volatility σ (the firms business risk), the initial 
leverage ratio L, and the risk free rate r.  Figure 2.2 plots the credit spread between 
defaultable and non defaultable bonds with various maturities and different volatility 
levels. This information can be used as a proxy to derive the prices of credit derivatives 
contracts such as credit default swaps.  
 
According to Kim, Ramaswamy, and Sundersan (1993) and Jones, Mason, and Rosenfeld 
(1984), Merton’s model does not generate the level of yield spreads which can be 
observed in the market. They showed that Merton’s model is unable to generate yield 
spreads in excess of 120 basis points, whereas over a period between 1926-1986, the 
yield spread of AAA-rated corporate ranged from 15 to 215 basis points.  
 
Using a set of structural models, Ericsson, J, Reneby, J and Wang, H., (2005)  
investigated bond yield spreads and the price of default protection for a sample of US 
corporations. Theory predicts that if credit risk alone explains these two quantities, their 
magnitudes should be similar. Their findings are consistent with previous results that 
bond yield spreads are underestimated. However, their result showed that credit default 
swap prices (premium) were much lower than bond spreads. Furthermore, their results 
highlighted the strong relationship between bond residuals and non-default proxies, in 
particular illiquidity. CDS residuals exhibit no such relations. This suggests that the bond 
spread underestimation by structural models may not stem from their inability to properly 
account for default risk, but rather from the importance of the omitted risk factors.  
Pricing section of this paper will provide further empirical analysis on credit default swap 
premium data from the market and default risk pricing from structural models.  
  
2.1.2 Advantages, disadvantages and model extensions 
 
The main advantage of Merton’s model is that it allows to directly apply the theory of 
pricing European options developed by Black and Scholes (1973). However, the model 
requires to make the necessary assumptions to adapt the dynamics of the firm’s asset 
value process, interest rates and capital structure to the requirements of the Black-Scholes 
model.  
Despite its simplicity and intuitive appeal, Merton's model has many limitations. First, in 
the model the firm defaults only at the maturity of the debt, a scenario that may not be 
very realistic in real life. Second, another problem of Merton’s model is the restriction of 
default time to the maturity of the debt, ruling out the possibility of an early default, no 
matter what happens with the firm’s value before the maturity of the debt. If the firm’s 
value falls down to minimal levels before the maturity of the debt but it is able to recover 
and meet the debt’s payment at maturity, the default would be avoided in Merton’s 
approach. Third, Another problem with the Merton model is that the value of the firm, an 
input to the valuation formula, is very difficult to determine. Unlike the stock price in the 
Black-Scholes-Merton formula for valuing equity options, the current market value of a 
firm is not easily observable. 
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Another limitation of the model is that the usual capital structure of a firm is much more 
complicated than a simple zero-coupon bond. Geske (1977, 1979) considers the debt 
structure of the firm as a coupon bond, in which each coupon payment is viewed as a 
compound option and a possible cause of default. At each coupon payment, the 
shareholders have the option either to make the payment to bondholders, obtaining the 
right to control the firm until the next coupon, or to not make the payment, in which case 
the firm defaults. Geske also extends the model to consider characteristics such as sinking 
funds, safety covenants, debt subordination and payout restrictions.  
 
The assumption of a constant and flat term structure of interest rates is other major 
criticism the model has received. Jones et al. (1984) suggest that “there exists evidence 
that introducing stochastic interest rates, as well as taxes, would improve the model’s 
performance.” Stochastic interest rates allow to introduce correlation between the firm’s 
asset value and the short rate, and have been considered, among others, by Ronn and 
Verma (1986), Kim, Ramaswamy and Sundaresan (1993), Nielsen etal. (1993), Longstaff 
and Schwartz (1995), Briys and de Varenne (1997) and Saá-Requejo and Santa Clara 
(1997). 
 
Another characteristic of Merton’s model, which will also be present in some of the First 
Passage Models (FPM), is the predictability of default. Since the firm’s asset value is 
modelled as a geometric Brownian motion and default can only happen at the maturity of 
the debt, it can be predicted with increasing precision as the maturity of the debt comes 
near. As a result, in this approach default does not come as a surprise, which makes the 
models generate very low short-term credit spreads7. 
 
2.2 First passage model. 
 
First passage model were introduced by Black & Cox (1976) extending the Merton model 
to the case when the firm may default at any time, not only at the maturity date of the 
debt. They also assume that the firm’s shareholders receive a continuous dividend 
payment, proportional to the current value of the firm. Consequently as in section 2.1, the 
SDE which governs the dynamics of the firm’s value takes the following form, under the 
risk neutral probability measure Ρ 8, 
 
 ( ttt dWdtkrVdV )σ+−= )(        (10) 
 
Where  represents the payout ratio (continuous dividend payment), 0≥k 0>σ and r 
represent constant volatility and constant short term interest rate respectively.  
 
Safety covenant in the firm’s debt prospectus give the bondholders the right to force the 
firm to bankruptcy if the firm is doing poorly according to a set standard. The standard 

                                                 
7 See Jones et al. (1984) and Franks and Torous (1989). 
 
8 The drift term in equation 1 is now adjusted to dividend payout. In this section, some of the notations 
introduced in previous sections are changed but their interpretation still remain the same.     
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for a poor performance is set in Black and Cox in terms of a time-dependent deterministic 
barrier: 
 
  ),,0[,)( )( TtKetv Tt ∈= −−γ       (11) 
 
With some constant K. when the value of the firm crosses this lower threshold the 
bondholders takeover the firm. Otherwise default takes place at maturity of debt 
depending on whether or not , where L represents (see footnote 7) the face value 
of the firm’s debt.  

LVT ≥

 

  
⎩
⎨
⎧

=

<
=

.

,)(

TtforL

Ttfortv
vt  

 
The default time τ is the first moment in the interval [0, T] when the firm’s value falls 
below the time varying level ; otherwise the default event does not occur at all. The 
default time 

tV

tv
τ can be defined as 

 
  { },:],0[inf tt vVTt <∈=τ  
 
Formally, we deal with the defaultable contingent claim ),,,( τXZX which settles at time 
T; where 
  .,, 12 TtT VXVZLX ββ ===  
 
The random variable X represents the firms liabilities to be redeemed at time T (promised 
claim). If default does not occur prior to or at time T, the promised claim X is paid in full 
at time T. otherwise either:  
 

(i) default occurs at time t < T, and the holder of the defaultable claim 
receives the recovery payoff at time t, or: tZ

 
(ii) default occurs at the debt maturity T, and the recovery payoff X is 

received by the claimholder at time T.  
 
The recovery process is assumed to be proportional to the firm’s value process: Z

tt VZ 2β=  for some constant 2β . Similarly, the recovery payoff at maturity equals 

TVX 1β=  for some constant 1β . The coefficient 1β and 2β are constant and represent the 
bankruptcy costs. The default time τττ ˆ∧= where τ is the passage time of the firm’s 
value process V to the deterministic barrier v : 
 
  { } { })(:],0[inf)(:],0[inf tvVTttvVTt tt <∈=≤∈=τ  
τ̂ is the Merton’s default time:  
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.11ˆ }{}{ LVLV TT
T ≥< ∞+=τ  

Assuming that for any  we have ),0[ Tt ∈ ),,()( TtLBtv ≤ where B(t, T) is the price of 
defaultable zero coupon bond at time t with a maturity of T.  

   ).,()()( TtLBLeKe tTrTt =≤ −−−−γ

 
Thus the payoff to the bondholder at the default time τ never exceeds the value of debt 
discounted at the risk-free rate. At time t < T, the value of a defaultable zero-coupon 
bond with face value of L and maturity T,  denoted by D(t, T), admits the following 
probabilistic representation, },{}{ tandt >=> ττ  
 

( )tLVT
tTr

P FLeETtD
T

|1),( },{
)(

≥≥
−−= τ   no default 

    
( )tLVT

tTr
TP FeVE

T
|1 },{

)(
1 <≥

−−+ τβ  default at T 
 
 

( )tTt
trT

TP FeeKVE |1 }{
)()(

2 <<
−−−−+ τ

ττγβ  default at Tt << τ   (12) 

 
After evaluating the above expectations, Bingham and Kiesel show a closed-form 
solution for the value of a defaultable zero-coupon bond as a down-and-out barrier 
option9. From this model, one can then infer the default probability from time t to T: 
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      (15) 

 
 ,12 tThh V −−= σ         (16) 
 
The first passage model have been extended to account for stochastic interest rates, 
bankruptcy costs, taxed, debt subordination, strategic default, time dependent and 
stochastic default barrier, jumps in the asset value process, etc. These extensions may 
take into account several important market related factors but these improvements adds 
significant complexity to the model. See Bielecki and Rutrkowski (2003) for more in-
depth analysis. Further discussion on calibration of the first passage model and 
application to credit default swap market price quotes, see; Damiano Brigo and Marco 

                                                 
9 Interested readers should refer to Bingham N.H., and Kiesel, Rudiger  “Risk-Neutral Valuation: Pricing 
and hedging of financial derivatives”  Spring Finance, 2nd Edition.  
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Tarenghi (2005) “credit default swap calibration and counter party risk valuation with a 
scenario based first passage model” Working paper.  
 
 
 
2.2.1 Other Structural Models 
 
2.2.2 The Kim, Ramaswamy and Sundaresan 1993 Model 
 
Kim, Ramaswamy and Sundaresan (1993) used simpler default boundary but more 
realistic stochastic interest rate process the Black-Cox 1976 model. Default is triggered if 
the asset value drops below an exogenous constant w. The interest rate process follows 
the risk-neutral Cox-Ingersoll-Ross Model:  
 
  11)( dWrdtrbadr σ+−=       (17) 
 
Where r is the interest rate, a  is mean reversion factor and b is long term average of r, 
sigma is the volatility of r and W is Weiner process. This model has the convenient 
property that the interest cannot become negative.  
 
2.2.3 The Longstaff-Schwartz 1995 Model 
 
Longstaff and Schwartz suggest a first-passage model with exogenous and constant 
default boundary K and an exogenous and constant recovery rate w.  For the interest rate 
process,  Longstaff and Schwartz use the well-known Vasicek model:  
 
   11)( dWdtrbadr ησ+−=       (18) 
 

Where η is an exogenous constant and all the other parameters are the same as in the 
Cox-Ingersoll-Ross Model. One of the key findings of Longstaff and Schwartz model is 
that the long term average of the interest rate can be negative (b < 0). This implies that 
the credit spreads decrease when the risk-free treasury rate increases. This seems 
counterintuitive but can be explained by the fact that a higher interest rate implies higher 
growth rate of the asset value V  and as a consequence the probability of default is lower, 
and with it the credit spread.  
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2.3. Empirical tests from structural models 
 
Hull, Nelken and White (2203) tested whether five year credit spreads implied from their 
implementation of Merton’s model and the traditional implementation are consistent with 
market quoted credit default swaps (CDS) premiums. There are number of reasons for the 
difference between the credit spreads implied from Merton’s model and the market 
observed credit default swaps spreads. According to Hull, Nelken and White (2203), 
Merton’s model is not a perfect representation of market practise because firm’s do not 
usually issue only zero-coupon debt.  Credit default swap spreads are also likely to be 
slightly different from the bond yield spreads for some of the reasons listed in section 5.4.  
 
Figure 2.3  Historical 5 year CDS spread vs Credit spread for France Tel.  (2003-2005) 
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Source: Bloomberg LP. July 2005 
 
The credit spread backed out from Merton’s model is the spread between the yield on 
zero-coupon bonds while the credit default swap spreads are based on spread between the 
yields on par yield bonds. The authors also suggest that there may be other factors other 
than those suggested by Merton’s model may affect the CDS spreads. This is similar to 
the conclusion drawn from the implementation of the reduced-form models. These factors 
will be discussed briefly (see section 5.4).  
 
 
3.1  Reduced-Form Credit Risk Models. 
 
3.1.1 Intensity Based Model. 
 
Reduced form models do not model the evolution of the firm’s value. Instead a specified 
jump process models default exogenously. There are two classes of reduced form models. 
They are intensity-based models that are concerned with modeling the time of the default 
event and credit migration models that are concerned with modeling the migration 
between credit ratings. Credit derivative models use intensity-based models, as it is the 
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modelling of the default event that is important in pricing credit derivative contracts. A 
common problem with structural models is that default may occur before the boundary 
conditions have been met and at other times it may not occur even when the boundary 
conditions have been met. Intensity-based models therefore try to model the likelihood of 
default rather than trying to specify the actual time of default. According to Bielecki and 
Rutkowski (2002) intensity-based models were first formalized by Jarrow and Turnbull 
(1995) and Madan and Unal (1998). In intensity based models the time of default is 
modeled as the time of the first jump of a Poisson process with (possibly random) 
intensity. The time of default is denoted byτ  and can be regarded as a stopping time. At 
the stopping timeτ  the default indicator function I(t) jumps from zero to one and is 
denoted by 
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In general, there could exist more than one stropping time τ before time t. Assuming that  

1+< ii ττ  the collection of stopping times is given by the point process 
 
  ,......}.,{},{ 21 τττ =Ν∈ii  

 
The counting process N(t) counts the number of stopping times of the point process that 
are before time t, and is given by 
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In reality there can only be one default event and so the time to defaultτ is the time of the 
first jump of N, 
  { },0)(|inf >ℜ∈= + tNtτ  
 
The probability of N(t) jumping in an infinitesimally small time interval is called the 
default intensity function )(tλ or the hazard rate. In order to determine the probability of 
a default occurring in the time interval [0, T], it is useful to recap a few properties of the 
Poisson process. Firstly, by the definition of a Poisson process the probability of n jumps 
occurring in the time interval [0, T] is given by; 

  [ ] .)(exp)(
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Secondly, this implies that the probability of no jumps occurring in the interval [0, T] is 
given by 
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and, therefore, P(0, t) is the probability that no default events occur in the interval [0, T] 
and is called the survival probability. The probability that a default event occurs in the 
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interval is equal to one minus the probability of surviving. Hence the probability of 
default defP in the interval [0, t] is given by 
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The intensity approach to modeling credit risk was studied by, among others, Jarrow & 
Turnbull (1995),  Jarrow et al. (1997), Duffie et al. (1996), Duffie (1998a), Lando 
(1998a), Duffie and Singleton (1999), Elliot et al. (2000), Schonbucher (2000a, 2000b).  
 
3.1.2 Jarrow and Turnbull (1995) – discrete approach. 
 
Jarrow & Turnbull use the risk-free rate as numeraire, they build a discrete lattice for the 
default-free term structure  as well as for defaultable one and show that, under this 
numeraire, they can obtain unique risk-neutral or martingale probabilities such that the 
value of defaultable bond can be expressed as a discount expectation under the risk-
neutral measure.  In this section we drive a simplified mathematical formulation of the 
default probability with  no recovery rate using one period discrete time.  
 
Define:  
    Yield on a T-year corporate zero-coupon bond :)(Ty

:)(* Ty  Yield on a T-year risk-free zero-coupon bond  
:)(TQ   Probability that a corporation will default between time zero and T 

  or )( TQQT <= τ  risk neutral probability of default before time T 
  )1()( TQTQ −=>τ  survival probability 

τ :  Default time 
TtP ,   Default free zero-coupon bond 

Tt
dP ,   Defaultable zero-coupon bond   

 
The present value of a T-year risk-free zero-coupon with a redemption value of 100 is 

TTye )(*

100 −  while the present value of a corporate zero-coupon bond with similar maturity 
is . The expected loss from default is therefore TTye )(100 −

 
TTye )(*

100 −  -  =  TTye )(100 − ][100 )()(* TTyTTy ee −− −
 
Using the indicator function, the expected payoff of the defaultable bond can be written 
as:  
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If we assume that there is no recovery in the event of default, the calculation of  )(TQ
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is relatively easy. At maturity of the corporate bond, it will either be worth zero if default 
takes place or 100 (par value of the bond) with probabilities of or 

respectively. Lets build a two state binomial tree from period 0 and T, where the 
node at t = 0 is the present value of the corporate bond, and nodes at period t = T are the 
expected payoff of the bond if default takes place or not. From the tree below, we can 
derive the risk-neutral default probabilities between period zero and T. 

)(TQ
)(1 TQ−

 
       TTyeTQ )(*

)](1[100 −−
    (1 TQ− )
   
 

TTye )(100 −  
   

 
)(TQ    0      

       
The value of the bond can be calculated as 
 

0)](100[)](1[100100 )*()( TQeTQe TTYTTy +−= −−  
 

TTYTTy eTQe )*()( )](1[100100 −− −=         
                        

])([100100 )*()*()( TTYTTyTTy eTQee −−− −=              
 

100
])([100

100
100 )*()*()( TTyTTyTTy eTQee −−− −
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TTYTTyTTy eTQee )*()*()( )( −−− −=  
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e
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e
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−−

−
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TTy

TTyTTy

e
eeTQ )*(

)()*( ])( −

−− −
=   or   (22) 

})(*)([1)( TYYTTyeTQ −−−=
 
Probability of Default assuming recovery rate R: 
 
If we use the same notation as before and suppose the expected recovery rate is R, then if 
default takes place, the bondholder receives a proportion of R of the bond's no-default 
value. If there is no default, the bondholder receives the face value of the bond (100). 
Lets set up the same tree again but incorporate recovery rate of R this time.  
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We can derive the value of the bond as 
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now, substituting A and B for the original values, we have the solution 
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Table 1.2 
DISC.FACT DISC.FACT DISC.FACT

PRICE COUPON YEAR 1 YEAR 1 YEAR 1
Defaultable Par Bond 1 100 8 0.9259
Defaultable Par Bond 2 100 10 0.8249
Defaultable Par Bond 3 100 12 0.70527

Benchmark Swap Curve Price Coupon 3 4 5

 
DISC.FACT DISC.FACT DISC.FACT

PRICE COUPON YEAR 1 YEAR 2 YEAR 3
Default Free Bond 1 100 3 0.9709
Default Free Bond 2 100 4 0.9335
Default Free Bond 3 100 5 0.88908  

YEAR 1 YEAR 2 YEAR 3
Discount Spreads 0.0449 0.1086 0.18381
Risk Neutral Default Probability 0.09259 0.15032 0.219393  
 
 
From table 1.2, we drive the risk-neutral default probability for defaultable bond from 1 
year to 3 years using par defaultable and risk-free bonds with coupon payments. We use 
the following notations to explain the above result10:  
 
Define:  
    Discount factor spread for period T )(TSP

:)(TQ   Default probability for period T  
:R   Recovery rate   

)(TDFB  Benchmark discount factor for period T 
 
The default probabilities for period 1 to 3 are calculated as 

 
))1(*)1/()1(()1( BDFRSPQ −=     

  ))2(*)1))(1(1/())1()2(()2( BDFRQSPSPQ −−−=  
  ))3(*)1))(3(1))(2(1))(1(1/()2()3(()3( BDFRQQQSPSPQ −−−−−=  
Table 1.3 

EXPECTED DEFAULT
MATU RISK-FREE CORPORATE BOND LOSS - (% OF NO CUMULATIVE Default 
RITY ZERO -RATE ZERO- RATE DEFAULT VALUE) DEFAULT PROBABLTY Probability

1 0.05 0.0525 0.2497% 0.2497% 0.2497%
2 0.05 0.055 0.9950% 0.9950% 0.7453%
3 0.05 0.057 2.0781% 2.0781% 1.0831%
4 0.05 0.0585 3.3428% 3.3428% 1.2647%
5 0.05 0.0595 4.6390% 4.6390% 1.2961%  

      
Default probability can be quantified in terms of default probability density or in terms of 
hazard rate. The (risk neutral) hazard rate )(tγγ =  is defined by  
 
                                                 
10 The data in table 1.2 and 1.3 are numerical implementation from excel spreadsheet 
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  ),|()( tdtttQdtt >+≤<= ττγ  
 
Which is the probability of default between time t and t+dt conditional on  no earlier 
default. dtt)(γ  is the likelihood of default between time t  and time t+dt  conditional on 
no default between time zero and time t.  The default probability density  is the 
unconditional default probability between times t  and time t+dt  conditional as seen at 
time zero and the relationship between  

dttq )(

)(tγ  and q(t) is:  
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Table 1.3 lists the unconditional probabilities of default as seen at time zero. The default 
probability for year 5 is computed as 1.2921%. The hazard rate is the default probability 
in year 5 given that no default has taken place up to year 4. The probability of no default 
prior to year 4 is 1 – 0.0033428 = 0.966572%. The hazard rate for year 4 is therefore 
0.012962/0.966572 = 1.3410% 
 
3.2. Arbitrary deterministic recovery, deterministic interest rates.  
 
If the recovery rate at the random default time τ is )(τZ , where the function is 
some deterministic function of time, and also that the risk-free interest rate r(t) depends 
deterministically on time. The price of defaultable bond via risk-neutral pricing is then 
given by,  

)(tZZ =
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To compute this, one needs the probability distribution of the default time τ . Instead of 
working directly with ),( TQ >τ we use a closely related quantity, the hazard rate which 
is specified above.  
 
  ),|()( tdtttQdtt >+≤<= ττγ  
The relationship between the hazard rate and the cumulative distribution function (cdf) of 
τ  is described:  
 
Lemma 3.1. For all we have that  ,0≥t
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Consequently, the cdf and the pdf of τ with respect to the probability Q are,  
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And  
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Which is the derivative of  τF 11

Now revisiting the zero-coupon bond price of a defaultable bond with zero recovery but 
with deterministic and time dependent interest rate,  
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That is, instead of discounting with r(t), we discount with r(t) and ).(tγ  where  )(tγ  is an 
instantaneous spread.  
If we now assume a deterministic recovery )(τZ at time τ , that is, the amount of 

recovered should default time happen at t )(tZ )( τ=t is known beforehand; the quantity 
)(τZ  is random variable since τ  is a random variable. As before:  
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The discount factor  is pulled out of the expectation sign since r(t) is assumed to 
be deterministic. However the second discounting factor is stochastic because of the 
random time 

∫−
T

duur
e 0

)(

τ  and cannot be pulled out of the expectation sign. As specified above the 

first discount factor in equation (26) is adjusted;  and we evaluate the 
remaining expression inside the expectation sing with the random component (second 
term in equation (27):  

∫ +−
T

duuduur
e 0

)()( γ

 

   .10
)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∫
≤

−

T

duur

Q ZeE ττ

τ

 
We had an expression for the probability of default between (t, t+dt): 
 

                                                 
11 The proof of this result, see pricing notes for Financial Engineering lecture notes by Professor 
Brummelhuis, R. Birkbeck University.  
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The last equation cane be written as;  
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And the price at time t; 
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3.2.1 Stochastic recovery, interest rate and hazard rate 
 
In stochastic interest rate environment, and with stochastic recovery )(τZ and hazard rate 

).(tγ , one has:  
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For more rigorous proof, see Bielecki and Rutkowski (2002) “Credit Risk” Springer 
Verlag.  
In case of zero recovery, the last term of the above equation drops out and we are left 
with;  
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3.2.2 Recovery Protocols 
 
In the real world payoffs of defaulted securities are usually greater then zero. The 
recovery rates (given default), denoted by )(τZ , is defined as the extent to which the 
value of an obligation can be recovered once the obligor has defaulted, i.e. the recovery 
rate is a measure for the expected fractional recovery in case of default and such that it 
takes any value in the interval [0, T]. The loss rate (given default), is defined as 1 minus 
recovery rate.  
 
Fractional Recovery of Par:  
 
It is assumed that there is a compensation in terms of cash (invested in risk-free money 
market account) and the recovery rate is expressed as a fraction of par. The model has 
been applied, e.g., by Duffie (1998b). 
 
If V  represents the claims constant par value and δ  is the claims recovery rate, then;  

δVZt =  and 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∫+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∫= ∫
+−+−

>

T

t t

duuduur

Qt

duuduur

Qt
d
Tt fdsessZVEfVeEP

s

t

T

t |)()(|1
)()()()(

,

γγ

τ γδ  (31) 

 
Fractional Recovery of treasury:  
 
It is assumed that there is a compensation in terms of (the value of) non-defaultable 
bonds, i.e. the value of equivalent treasury bond. Several authors have proposed this 
model, e.g., Jarrow & Turnbull (1995), Madan & Unal (1998).  
 

In the even of default, recovery is then given by:  and the price of a 
defaultable bond using this assumption;  
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Fractional Recovery of market value:  
 
It is assumed that there is a compensation in terms of equivalent defaultable bonds, which 
have not defaulted yet, i.e. the recovery rate is expressed as a fraction of the market value 
of the defaulted bond just prior to default. This model was mainly developed by Duffie & 
Singleton (1997).  
Assume  is a positive fraction of the market value of the bond just prior to default 

, then;  
τZ

d
tPZ ττ δ ,=
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Where uuus γδ )1()( −= , and uδ is the loss rate and uγ is the intensity of default.  
 
 
4.1   Jarrow, Lando and Turnbull (1997) model – discrete approach. 
 
Jarrow, Lando and Turnbull model is a Markov model for the term structure of credit 
spreads based on the earlier Jarrow and Turnbull (1995) paper, but linking the default 
process to a discrete state space Markov chain in credit ratings, i.e. the life of the firm is 
viewed as a journey through the possible rating states where one of them is an absorbing 
state. This model provides great flexibility to calculate the parameters to observable data 
and to use it for many purposes: pricing and hedging of bonds with embedded options, 
pricing of credit derivatives. The main assumption of this approach is that ratings are an 
accepted indicator of a firm’s creditworthiness. Default is exogenous process that does 
not require dependence of the underlying asset of the firm. The advantage of such 
methods against the structural models introduced above is that we can restrict the 
calibration to the available observables; there is no particular economic requires. Here are 
a list of all the ingredients for this model:  
 
Forward rates are defined in discrete time as 
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Under this construction, the instantaneous interest rate r(t) is equivalent to f(t, T).  
The money market account value is similarly given by 
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Under the assumption of complete arbitrage-free markets, we have the following 
relationship: 
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And the price of defaultable bond taking into account the default likelihood is they given 
by:   
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if default takes place, the payoff is assumed to be fractional recovery of treasury as 
specified by Jarrow and Turnbull.12 Since the default free term structure and the default 
time are assumed to be independent, then; 
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Where )( TQt >τ is the probability that the firm will not default before the maturity 
(survival probability).   
The contribution of Jarrow et al. (1997) articulates around the specification of the 
bankruptcy process as the first hitting time of a time-homogenous Markov chain. This 
Markov chain is modelled on a finite state space S consisting in the credit rating classes 
{1, . . . . . . .,K}, where the K-1 class is the lower credit rating class, while class K is the 
absorbing state representing the bankruptcy state. This Markov chain is specified by KxK 
transition matrix:  

  ,     (36) 
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Where all transition probabilities are positive and ∑
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= ∀≡=
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Each of the probabilities represent the probability of getting from class i to class j in 
one period of time. The last line in equation (36) represents the probabilities attached to 
the absorbing state: the probability of leaving this state is always null and the probability 
of staying in this state in 1. Once a firm is in default, it will stay in default. Estimates of 
these transition probabilities can be found in the reports of credit rating agencies such as 
Moody’s or Standard and Poor.  

ijq

 
 
 
    

                                                 
12 See recovery protocols above to derive the payoff.  
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Table 1.4   Credit rating transition matrix 

 
Source:  Moody’s 2001 
 
From table 1.4, is the historical (“real-world”) probability of moving from credit rating 
class i to class j in one year as stated above. As mentioned by Jarrow et al., nonzero 
probabilities tend to concentrate on the diagonal for a 1-year transition matrix since a 
movement of more than one rating class is quite improbable.  

ijq

Following from equation (36), the transition matrix under the equivalent martingale13 
measure can be written as:  

  ,  (37) 
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In the Jarrow and Turnbull (1995) model, default probabilities and credit derivative prices 
were derived on the basis of illiquid bond prices. However, the Jarrow, Lando, and 
                                                 
13 For detailed introduction on Martingale representation theorem, Bjork, T. “Arbitrage theory in 
continuous time.” (1989) oxford university press.  
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Turnbull (1997) model replaced bond prices as the main input and apply historical 
transition probabilities as the basis for their analysis. Today, many investment banks and 
insurance companies apply the 1997 model and its extensions to price and hedge credit 
derivatives.  Some of the short comings of this model is that asset-liability structure of a 
company, is not part of the analysis (this may be argued to be the ultimate economic 
reason of default). Also, interest rate process and bankruptcy process are assumed to be 
independent. Jarrow, Lando and Turnbull also assume that bonds in the same credit class 
have the same yield spread.  Longstaff and Schwartz (1995) pointed out that this was not 
necessarily the case. Rating are also done infrequent and may not be recent enough to 
reflect current counter party risk.   
 
Figure 3.1  Credit Spread Term Structure 

Martingale Default Probabilities
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Figure 3.1 shows the default probabilities for various credit rating classes calculated in 
excel spreadsheet. See appendix A for spreadsheet used to generate one period transition 
matrix.  
 
In the following section, Duffie and Singleton model will be used to drive a theoretical 
and arbitrage free credit default swap (CDS) premium. We will also implement other 
numerical models using binomial tree to drive non-arbitrage CDS prices.   
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5.1 Pricing Credit Default Swaps 
 
Credit default swaps (CDS) are a form of insurance against possible default of a reference 
issuer, or a bond issued by this issuer. The protection seller promises to compensate the 
protection buyer in the event of default of the reference issuer. In return, the protection 
buyer pays a constant periodic payment, which terminates at the earlier of the CDS 
maturity or a default event. 
There are number of variations on the standard credit default swap. In binary credit 
default swap, the payoff in the event of default is a specific dollar amount. In a basket 
credit default swap, a group of reference entities are specified and there is a payoff when 
the first of these reference entities defaults. In a contingent credit default swap, the payoff 
requires both a credit event and additional trigger. The traditional trigger might be a 
credit event with respect to another reference entity or a specified movement in some 
market variable. 
Several papers have addressed the theoretical pricing of credit derivatives during the last 
few years. Longstaff Schwartz (1995) present the pricing of credit spread options based 
on exogenous mean-reverting process for credit spreads. Duffie (1999) presents a simple 
argumentation for the replication of as well as a simple reduced form model of the 
instrument. In the this section, we introduce a reduced-form type pricing model 
developed by Hull and White (2000), where they calibrate their model based on the 
traded bonds of the underlying on a time series of credit default swap prices on one 
underlying.  Like most other approaches, their model assumes that there are no counter 
party default risk. Default probabilities, interest rates, and recovery rates are independent.  
Finally, they also assume that the claim in the event of default is the face value plus 
accrued interest. Consider the valuation of a plain vanilla credit default swap with 1$ 
notional principal.  Using the notations below, we proceed to show the reduced-form 
pricing model.    
 
Figure 3.2  Payment structure of a CDS before and in the event of default 
 

 

 
 

 30



Credit Risk Models and the Valuation of Credit Default Swap Contracts 

Notations 
=),0( TP  Price today of a $1 risk-free discount bond maturing at time T  
=)(TCR  Par risky coupon rate for maturity T , in percent 

=)(tq       Default probability density at time t , conditional on no prior default 
=)(tQ      Cumulative default probability density up to time t  

∫=
T

dttqTQ
0

)()(  

 
=R Recovery rate: fractional amount of bond value recovered on default. 

=)(tAI Accrued interest function, based on 1% per annum coupon.  
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Note: for simplicity of notations, we assume in the following equations that bond coupon 
payment dates and premium payment dates coincide.  
A Credit Default Swap (CDS) provides protection against default of a reference issuer. 
The buyer of the protection pays a premium in the form of regular fixed payments S (%, 
annualized) for the duration of the protection period, or up to a default event. The 
protection seller will pay in the event of default of the reference issuer the difference 
between par and the post-default value of the bond. 
 
The expected present value of the “premium” leg of the CDS is 
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The two terms correspond, respectively, to premium payments (made if default has not 
occurred) and payments of accrued premium (if default has occurred). If we assume that 
in the event of a future default, the recovered amount is R  times par plus accrued 
interest, the expected present value of the “protection” leg of the CDS is 
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The market value of a CDS is the difference between the two legs. 
 
At initiation of a CDS, the premium (the CDS spread) is set to the value  
such that the two legs of the CDS are equal, and the CDS has zero initial value. Solving 
for the spread: 

)(TSS CDS=
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This equation gives the value of a par CDS spread, with the default probability curve 
used as an input. Conversely, if we have a curve of par CDS spreads, we can use a 
bootstrap procedure to infer the default probability curve. 
 
Note: if we do not want to include accrued interest in the default claim, we set 0)( ≡tAI . 
 
The variable is referred to as the credit default swap spread or CDS spread. The 
formula at (40)  is simple and intuitive for developing an analytical approach for pricing 
credit default swaps because of the assumptions used. The spread  is the payment 
per year, as a percent of notional principal for newly issued credit default swap contract. 
Table 1.5 shows the market value of   for a list of reference names. For example 
the quoted CDS bid/ask spread for a maturity of 5 years for France Telecommunications 
is: 38/44 basis points for bid and ask respectively.  

)(TSCDS

)(TSCDS

)(TSCDS

 
 
Table 1.5   CDS quotes: Telecoms and Electronics – Banco Bilbao 

 
Source: Bloomberg LP. July 2005 
 
To implement the above model in order to approximate the quoted market prices, one 
need to link the rates observed in the credit protection market and the corporate bond 
market via probabilities of default of the issuer. The input used to price the CDS contract 
should be selected from a range of market observed yield curves which should include; a 
curve of CDS spreads, an issuer (credit-risky) par yield curve, and default probability 
curve. The assumptions based on the independence of recovery rates default probabilities 
and interest rates may not hold completely in practice since high interest rates may cause 
companies to experience financial difficulties and default or administration, and as a 
result of this default probabilities would increase. Thus, a positive relation between 
interest rates and default probabilities may be associated with high discount rates for the 
CDS payoffs, and this would have the effect of reducing the CDS spread. Nevertheless, 
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the Hull-White approach presents a neat and intuitive approach that allows for a closed-
form pricing approach for credit default swap, calibrating market data.  
 
Figure 4.1  Historical CDS for selected Telecoms reference names (2003-2005) 
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Source: Bloomberg LP. July 2005 
Reference names: British Tel. Deutsche Tel. France Tel. Nokia, Telefonica, Vodafone, Telenor 
 
As an extension of the above model, Hull and white (2001) investigate the impact of 
counterparty default risk on the value of vanilla CDS.  They find that this impact is small 
when the credit quality correlation between the counterparty and the reference entity is 
zero. It increases as the correlation increases and the creditworthiness of the counterparty 
declines.  

5.3 Relating risky par rates & default probabilities 
 
We assume that if a bond defaults, the amount recovered is a fraction R  of the par value 
of the bond plus accrued interest. Recovery rates are usually reported as the ratio of the 
post-default value of the bond and its par value. 
 
The equation relating the risk-free discount curve , the risky par rate , the 
recovery rate 
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The first term on the RHS is the sum of all coupons paid assuming that default has not 
occurred before their payment times. The second term takes accrued interest into account: 
if default occurs in the middle of a coupon payment period, interest accrued on the 
coupon is paid. The third term is the bond face value, assuming that the issuer had not 
defaulted before maturity. The fourth term sums recovered values (R times par plus 
accrued interest) assuming default before maturity of the bond. All future payments are 
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discounted using the risk-free discount rates. Since this is a par risky bond, the four RHS 
terms sum up to 100. 
 
If the default probability curve is known, we can compute the risky par curve directly. If 
the risky par curve is known, we can infer the default probability curve using a bootstrap 
procedure. 

5.4 CDS model using stochastic interest rate and intensity process 
 
In this section, we present similar closed-form model for valuing credit default swaps 
within the reduced-from framework of Duffie (1998), Lando (1998), Duffie and 
Singletob (1998), and others. The default intensity is modeled as square-root process and 
explicit solution of credit default swap premia is given. Following standard notion, let  
denote the risk-free rate and 

tr

tλ  the intensity of the Poisson process governing default. 
Both  and tr tλ  are stochastic and are assumed to follow independent processes. In the 
event of default, the bondholders are assumed to recover a fraction w−1  of the par value 
of the bond. The value of risk-free zero-coupon bond with maturity of T is given 
by;  

),0( TP

 

        (42) ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−= ∫

T

t dtrETP
0

exp),0(

 
The risk-neutral dynamics of the intensity process tλ  is given by 
 
  dZdtd λσβλαλ +−= )(       (43) 
 
Where ,α ,β and σ are positive constants, and  is a standard Brownian motion. These 
dynamics allow for both mean reversion and conditional heteroskedasticity in corporate 
spreads and guarantee that the intensity process is always nonnegative. Given these 
dynamics, the probability that default has not occurred by time T is given by;  
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And the density function for the time until default is given by  
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From Duffie (1998), Lando (1998), Duffie and Singleton (1999), the value of corporate 
bonds and the premium and the protection leg of credit default swap can be expressed as 
expectations under the risk-neutral measure. Letting c denote the coupon rate of 
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defaultable bond, then the price of the bond which is a function of CB(c,w,T)14 can be 
expressed as:  
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The first term in equation (46) represents the present value of the coupon portion of the 
bond, the second term represents the present value of the promised principal payment, 
and the third term is the present value of the recovery payments in the event of default.  
As before, let s denote the premium paid by the buyer of default protection. The present 
value of the premium leg of a credit default swap P(s, T) can be expressed as 
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And the value of the protection leg PR(w,T) can be expressed as 
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As before, we solve for s by setting the value of the protection and premium legs equal to 
each other. We  then have 
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To provide some intuition about the credit default swap market, Duffie (1990) shows that 
premium equals the fixed spread over the risk-free rate that a corporate floating rate note 
would need to pay to be able to sell at par. Thus if both a firm and the treasury issued 
floating rate notes tied to the risk-free rate, the fixed spread between rates paid by the 
floating rate notes would equal the credit default premium s. This result is however not 
the case for the yield spread between corporate and treasury fixed rate bonds. Longstaff. 
F.A., Mithal S. and Neis E. (2003) apply the closed form solution is equation (48) and fit 
the model to the prices of corporate bonds. They solve for the premium implied by the 
model. The model implied values of the premia are then compared with the actual market 
credit default swap premia.  
 
 
 
                                                 
14 This notation is also similar to previous notion for defaultable bond:  d

TtP ,
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Longstaff. F.A., Mithal S. and Neis E. (2003) used credit default swap data for 5 year 
contract and corresponding bond prices provided by Citigroup for 68 firms for the period 
of march 2001 and October 2002. They estimated the dynamics of the intensity process 
for each of the firm as well as all the intensity parameters in order to estimate default 
swap prices for these firms. Their result showed wide variation in credit default swap 
premia, both overtime and across firms. See table 1.6.  
 
Table 1.6  Summary Statistics for the Differences Between Model Implied and Market Credit-Default 
Swap Premia. This table reports summary statistics for the differences between the premia implied by the fitted credit 
model and market premia for the indicated firms. Differences are expressed in basis points. Averages reported at the 
bottom of the table are cross-sectional averages of the indicated summary statistics taken over all firms.   
 

 
 
Table 1.615 shows the empirical result from Longstaff. F.A., Mithal S. and Neis E. (2003) 
where summary statistics for the difference between the model implied and the market 
credit default swap premia are reported.  These summary statistics include the average 
differences with their associated t-statistics, the minimum and maximum values of the 
difference, and the serial correlation of the difference.  One of the most striking result 
from their investigation is that the average difference or pricing error is positive for all 
the firms (68) in the sample. Thus, the premia implied by fitting the model to the market 
prices of corporate bonds are all greater on average then the actual credit default swap 
premia observed in the market. They show that all of the average differences are highly 
statistically significant based on their t-statistics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
15 We show only summary statistics for companies in the financial sector.   
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Figure 4.2  Histogram-  distribution of average premium differences across firms.  

 
 
Fig. 4.2. Distribution of the average difference between the implied and market credit-default swap premia. For each 
firm in the sample, the average difference is calculated as the time-series average of the difference between the implied 
credit-default swap premium and the market credit-default swap premium. The plot shows a cross-sectional distribution 
of an average difference for 68 firms in the sample. The cross-sectional mean of the average difference is 60.8 basis 
points. The standard deviation of the average difference is 21.2 basis points. 
 
These result strongly suggest that the cost of credit protection in the credit default swap 
market is significantly less than the cost implied from the corporate bond prices. Because 
of the cross sectional variations in the differences between implied and market premia, it 
is possible that other factors may be effecting the cost of protection.  
 
In this section, we list a number of suggested factors that may contribute to the significant 
differences between market observed CDS prices and modeled CDS prices.  
 
 
Differences in Taxation:  
 
The differences in taxation between corporates and treasuries might explain a significant 
portion of the yield spread. Credit swap premium should reflect only the actual risk of 
default on the underlying bonds. Thus, if the spread between corporates and treasuries are 
partly tax related and partly default related, then this portion of the spread should not be 
incorporated into the credit default swap premium.  
 
Differences in liquidity:  
 
If corporate bonds are less liquid then treasury bonds, then corporate bond spreads could 
also include liquidity spread. Thus, the liquidity of corporate bonds should not affect the 
cost of credit protection in the CDS market. This implies that if corporate bond yields 
include liquidity component, then the credit default swap premia should be less then the 
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premia implied from corporate bonds. This is consistent with the result presented in table 
1.6.  
 
Modeling error: 
 
Another possible factor due to premia differences may be simply model error. That is, 
some key feature of the data is being missed by the model used to estimate the implied 
credit default swap premium from corporate bond prices.   
 
Figure 4.4.1  Market vs implied CDS (Enron).  

  
Fig. 4.4.1 Enron’s market credit-default swap premium, implied credit-default swap premium, and stock price. Figure 
4.4.1 shows Enron’s market and implied credit-default swap premia between December 5, 2000 and October 22, 2001.  
The dates on the figure 4.4.1 and 4.4.2 shows chronology of some of the events leading up to Enron’s bankruptcy. After 
rating downgrade of from credit rating class B to CC by S&P’s from November 28, 2001 and November 30, 2001. 
Enron Filed for bankruptcy and defaulted on its debt on December 2, 2001. Near the beginning of 2001, the model and 
the market price were close to each other. During the middle of the year, however, the implied premium is 
approximately 50 basis points higher than the market premium. On average the two premia are quite close.  
 
 
Figure 4.4.2  Historical stock prices (Enron).  

 
Figure 4.4.2 shows Enron’s stock price between December 5, 2000 and December 7, 2001. The arrows on each plot 
indicate the dates of important corporate events. Enron filed for bankruptcy on December 2 2001. 
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Asset swap spread:  
 
Market practitioners relate the cost of credit protection to the spread between corporate 
yields and swap yields. The credit default swap premium is related to the asset swap 
spreads, and the difference between the CDS premium and the asset swap spread is 
referred to as the basis16.  
 
Figure 4.5  Historical mid Asset swap spread vs CDS spread  (2003-2005) 
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Source: Bloomberg LP. July 2005 
 
Using Bloomberg data for a single reference entity 5 year credit default swap premium, 
and a mid asset swap spread from the reference obligation of the credit default swap 
contract, figure 4.5 show significant difference in basis point. This result is also 
consistent with the result reported by Longstaff. F.A., Mithal S. and Neis E. (2003).  
 
Longstaff. F.A., Mithal S. and Neis E. (2003) used the swap curve as a benchmark curve 
to determine the discount function. From their result, the use of the swap curve in 
estimating the discount function could not account for the large cross-sectional 
differences across firms. However, the average differences between implied and market 
premia across all firms was only 3.9 basis point according to the authors.  
 
Default risk from counter party: 
 
Another reason that could explain why the market observed CDS premia are lower than 
the implied CDS is that the firm selling credit protection might enter financial distress 
itself.  The price of the premium from the buyers point of view should not be worth as 
much if there is a default correlation between the protection seller and the reference 
entity.   

                                                 
16 for more in-depth analysis of asset swap pricing and basis arbitrage, see; Frank J. Fabozzi, Moorad 
Choudhry “Credit derivatives; Instruments, application and pricing.” 
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There are several other factors that may contribute to the differences between model 
implied CDS premiums and market quoted CDS premiums. Factors such as the cost of 
shorting corporate bonds could be considered. It is however beyond the scope of this 
paper to examine all of these factors. It is possible that further improvements of the 
implemented models or alternative models in the future as a result of further research 
may reduce the CDS premium variations observed in most empirical work.  
 

6.1 Kettunen, Ksendzovsky, and Meissner (KKM) model (2003)  
 
In this section, we use an alternative model to price CDS using KKM model17. Kettunen, 
Ksendzovsky, and Meissner derive the default swap premium with a combination of two 
easily implementable discrete binomial trees. One tree represents the default swap 
premium, and the other the default swap payoff incase of default.  
 
1. KKM model excluding counterparty default risk 
 
Notations:  

:r
tλ  risk-neutral probability of default of reference entity r  during (t, t+1) 
:ts  default swap premium to be paid at time t 
:N  notional  
:tτ  time between 0 and time t, expressed in years 

:tτ∆  time between t and t+1, expressed in years 
:RR  recovery rate 

:a  accrued interest from last coupon date until the default date  
:r  the risk-free rate for the period (0, t+1) 

 
We use a simple binomial tree where the premium is paid at the end of default period, 
where t represents the CDS payment dates.  
 
 
Figure 6.1 Discrete time binomial model 
      Ns1

r
0λ  

        Ns  r
0λ 2

             r
01 λ−

                                                       Ns1

            r
11 λ−

                               Ns2
   Time   0               1                  2  

                                                 
17 See Kettunen, J., D. Ksendzvosky, and G.Meissner, “pricing default swaps including reference asset- 
counterparty default correlation,” Hawaii Pacific University working paper, 2003.  
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The present value of the default swap premium payments from figure 6.1 is given by:  
 
  ( )[ ] ( ) ( )[ ]{ } 1010

212101010 111 ττ λλλλλ rrrrrrr eNsNseNsNs −− −+−+−+  (49) 
 
Cancelling several terms in (49) and generalizing for T period, the present value of the 
default swap premium is given by:  
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The above tree can be extended to more default period and the pricing formula will 
become more complicated. For example using 4 period tree, the present value of the swap 
premium can be written as:  
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Setting the swap premium s constant in time, i.e. ....,321 sss ==  and canceling several 
terms in (51), we get for time T periods:  
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Incorporating the payoff from the default swap seller to the protection buyer in event of 
default as usual, this is defined again as: )1( RRaRRN −− where all the parameters are as 
specified above. The present value of the expected payoff is given  by:  
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Generalizing (53), we get the present value of the expected payoff:  
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Combining equation (52), (53), and (54), the present value of the default swap from the 
buyers viewpoint is derived: 
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Setting (55) to zero and solving for s (credit default swap premium), we get:  
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  (56) 

 
As before, s represents the fair or the mid market default swap premium implied from the 
above model since it gives the swap a zero value at the interception of the contract. In 
other words, this is neither in-the-money nor out-of-the money from both seller and 
buyers viewpoint.  
 
We apply the above equation to compute the default swap premium using the following 
data: Given a notional value of $ 1,000,000, recovery rate of 40% and CDS contract with 
maturity of 1 year with annual payment. Default probability of 10% and 30 percent for 
period one and two. Accrued interest of 1% and 4% for both periods respectively. we 
plug these data into formula (56) using excel. The computed CDS premium is 22.67%. 
Appendix B shows a print out of the result from excel spreadsheet.   
        

7.1   Structural versus Reduced-form models 
 
Jarrow and Protter (2004) compared structural versus reduced form credit risk models 
from an information based perspective. According to the authors, difference between 
these two model types can be characterized in terms of the information assumed known 
by the modeler. Structural models assume that the modeler has the same information set 
as the firm’s manager—complete knowledge of all the firm’s assets and liabilities. In 
most situations, this knowledge leads to a predictable default time. In contrast, reduced 
form models assume that the modeler has the same information set as the market—
incomplete knowledge of the firm’s condition. In most cases, this imperfect knowledge 
leads to an inaccessible default time. Jarrow and Potter argue that the key distinction 
between structural and reduced form models is not whether the default time is predictable 
or inaccessible, but whether the information set is observed by the market or not.  
If one is interested in pricing a firm’s risky debt or related credit derivatives, then reduced 
form models are the preferred approach. There is consensus in the credit risk literature 
that the market does not observe the firm’s asset value continuously in time. This implies, 
that the simple form of structural models illustrated above does not apply. In contrast, 
reduced form models have been constructed, purposefully, to be based on the information 
available to the market. 
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8.1 Conclusion 
     
This paper introduces the existing credit risk models and their applications to price the 
premiums in credit default swaps (CDS) contract. Both structural and reduced-form 
models such as Merton’s model and extensions as well as intensity based models are 
introduced. we examined the difference between model generated CDS prices using both 
Merton’s model and intensity based model such as the model proposed by Duffie and 
Singleton. according to Longstaff. F.A., Mithal S. and Neis E. (2003) , there is a clear 
evidence that the implied cost of credit protection is significantly higher in the corporate  
bond market for all the firms they used in their sample.  Possible explanations for the 
higher cost of credit protection implied by corporate bonds could be due to number of 
factors including tax issues, liquidity issues, asset pricing, the cost of shorting corporate 
bonds, or model error due to missing out relevant data.  
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Appendix A 

 
The result on the spreads are generated using VBA code which we omit from this text due to the length of 
the code.  
 
Appendix B 
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Appendix C18

Banks AAA - Default Probability
from recovery of 0% - .9%
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18 Source: http://www.freecreditderivatives.com 
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