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Value-at-Risk 
The introduction of Value-at-Risk (VaR) as an accepted methodology for quantifying 
market risk is part of the evolution of risk management. The application of VaR has 
been extended from its initial use in securities houses to commercial banks and 
corporates, and from market risk to credit risk, following its introduction in October 
1994 when JP Morgan launched RiskMetrics™. VaR is a measure of the worst 
expected loss that a firm may suffer over a period of time that has been specified by 
the user, under normal market conditions and a specified level of confidence. This 
measure may be obtained in a number of ways, using a statistical model or by 
computer simulation. 

VaR is a measure of market risk. It is the maximum loss which can occur 
with X% confidence over a holding period of n days. 

VaR is the expected loss of a portfolio over a specified time period for a set level of 
probability. For example if a daily VaR is stated as £100,000 to a 95% level of 
confidence, this means that during the day there is a only a 5% chance that the loss the 
next day will be greater than £100,000. VaR measures the potential loss in market 
value of a portfolio using estimated volatility and correlation. The “correlation” referred 
to is the correlation that exists between the market prices of different instruments in a 
bank’s portfolio. VaR is calculated within a given confidence interval, typically 95% 
or 99%; it seeks to measure the possible losses from a position or portfolio under 
“normal” circumstances. The definition of normality is critical and is essentially a 
statistical concept that varies by firm and by risk management system. Put simply 
however, the most commonly used VaR models assume that the prices of assets in the 
financial markets follow a normal distribution. To implement VaR, all of a firm’s 
positions data must be gathered into one centralised database. Once this is complete 
the overall risk has to be calculated by aggregating the risks from individual 
instruments across the entire portfolio. The potential move in each instrument (that is, 
each risk factor) has to be inferred from past daily price movements over a given 
observation period. For regulatory purposes this period is at least one year. Hence the 
data on which VaR estimates are based should capture all relevant daily market 
moves over the previous year. 
 
VaR is only a measure of a bank’s risk exposure; it a tool for measuring market risk 
exposure. There is no one VaR number for a single portfolio, because different 
methodologies used for calculating VaR produce different results. The VaR number 
captures only those risks that can be measured in quantitative terms; it does not 
capture risk exposures such as operational risk, liquidity risk, regulatory risk or 
sovereign risk. 
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Assumption of normality 
A distribution is described as normal if there is a high probability that any observation 
form the population sample will have a value that is close to the mean, and a low 
probability of having a value that is far from the mean. The normal distribution curve 
is used by many VaR models, which assume that asset returns follow a normal 
pattern. A VaR model uses the normal curve to estimate the losses that an institution 
may suffer over a given time period. Normal distribution tables show the probability 
of a particular observation moving a certain distance from the mean.  
 
If we look along a normal distribution table we see that at -1.645 standard deviations, 
the probability is 5%; this means that there is a 5% probability that an observation 
will be at least 1.645 standard deviations below the mean. This level is used in many 
VaR models. (We will present an introduction to standard deviation and the normal 
distribution in a later Learning Curve). 
 
 
Calculation methods 
There are three different methods for calculating VaR. They are: 
■ the variance/covariance (or correlation or parametric method); 
■ historical simulation; 
■ Monte Carlo simulation. 

 

 

Variance-covariance method 
This method assumes the returns on risk factors are normally distributed, the 
correlations between risk factors are constant and the delta (or price sensitivity to 
changes in a risk factor) of each portfolio constituent is constant. Using the correlation 
method, the volatility of each risk factor is extracted from the historical observation 
period. Historical data on investment returns is therefore required. The potential effect 
of each component of the portfolio on the overall portfolio value is then worked out 
from the component’s delta (with respect to a particular risk factor) and that risk 
factor’s volatility. 
 
There are different methods of calculating the relevant risk factor volatilities and 
correlations. Two alternatives are: 
 
■ simple historic volatility: this is the most straightforward method but the effects of 

a large one-off market move can significantly distort volatilities over the required 
forecasting period. For example if using 30-day historic volatility, a market shock 
will stay in the volatility figure for 30 days until it drops out of the sample range 
and correspondingly causes a sharp drop in (historic) volatility 30 days after the 
event. This is because each past observation is equally weighted in the volatility 
calculation; 

■ to weight past observations unequally: this is done to give more weight to recent 
observations so that large jumps in volatility are not caused by events that occurred 
some time ago. One method is to use exponentially-weighted moving averages.  
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Historical simulation method 

The historic simulation method for calculating VaR is the simplest and avoids some 
of the pitfalls of the correlation method. Specifically the three main assumptions 
behind correlation (normally distributed returns, constant correlations, constant deltas) 
are not needed in this case. For historical simulation the model calculates potential 
losses using actual historical returns in the risk factors and so captures the non-normal 
distribution of risk factor returns. This means rare events and crashes can be included 
in the results. As the risk factor returns used for revaluing the portfolio are actual past 
movements, the correlations in the calculation are also actual past 
correlations. They capture the dynamic nature of correlation as well as scenarios when 
the usual correlation relationships break down. 

Monte Carlo simulation method 
The third method, Monte Carlo simulation is more flexible than the previous two. As 
with historical simulation, Monte Carlo simulation allows the risk manager to use 
actual historical distributions for risk factor returns rather than having to assume 
normal returns. A large number of randomly generated simulations are run forward in 
time using volatility and correlation estimates chosen by the risk manager. Each 
simulation will be different but in total the simulations will aggregate to the chosen 
statistical parameters (that is, historical distributions and volatility and correlation 
estimates). This method is more realistic than the previous two models and therefore 
is more likely to estimate VaR more accurately. However its implementation requires 
powerful computers and there is also a trade-off in that the time required to perform 
calculations is longer. 

 
 
 
 
 
 

Correlation 
Measures of correlation between variables are important to fund managers who are 
interested in reducing their risk exposure through diversifying their portfolio. 
Correlation is a measure of the degree to which a value of one variable is related to 
the value of another. The correlation coefficient is a single number that compares the 
strengths and directions of the movements in two instruments values. The sign of the 
coefficient determines the relative directions that the instruments move in, while its 
value determines the strength of the relative movements. The value of the coefficient 
ranges from -1 to +1, depending on the nature of the relationship. So if, for exmple, 
the value of the correlation is 0.5, this means that one instrument moves in the same 
direction by half of the amount that the other instrument moves. A value of zero means 
that the instruments are uncorrelated, and their movements are independent of each 
other. 
 
Correlation is a key element of many VaR models, including parametric models. It is 
particularly important in the measurement of the variance (hence volatility) of a 
portfolio. If we take the simplest example, a portfolio containing just two assets, 
equation (1) below gives the volatility of the portfolio based on the volatility of each 
instrument in the portfolio (x and y) and their correlation with one another. 
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where  

x is the volatility of asset x 
y is the volatility of asset y 
ρ  is the correlation between assets x and y. 

The correlation coefficient between two assets uses the covariance between the assets 
in its calculation. The standard formula for covariance is shown at (2): 
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where the sum of the distance of each value x and y from the mean is divided by the 
number of observations minus one. The covariance calculation enables us to calculate 
the correlation coefficient, shown as (3): 
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where  
 
s is the standard deviation of each asset. 

 
Equation (1) may be modified to cover more than two instruments. In practice 
correlations are usually estimated on the basis of past historical observations. This is 
an important consideration in the construction and analysis of a portfolio, as the 
associated risks will depend to an extent on the correlation between its constituents. 
 

It should be apparent that from a portfolio perspective a positive correlation increases 
risk. If the returns on two or more instruments in a portfolio are positively correlated, 
strong movements in either direction are likely to occur at the same time. The overall 
distribution of returns will be wider and flatter, as there will be higher joint 
probabilities associated with extreme values (both gains and losses). A negative 
correlation indicates that the assets are likely top move in opposite directions, thus 
reducing risk.  
 
It has been argued that in extreme situations, such as market crashes or large-scale 
market corrections, correlations cease to have any relevance, because all assets will be 
moving in the same direction. However under most market scenarios using 
correlations to reduce the risk of a portfolio is considered satisfactory practice, and the 
VaR number for diversified portfolio will be lower than that for an undiversified 
portfolio. 
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Simple VaR calculation 
To calculate the VaR for a single asset, we would calculate the standard deviation of 
its returns, using either its historical volatility or implied volatility. If a 95% 
confidence level is required, meaning we wish to have 5% of the observations in the 
left-hand tail of the normal distribution, this means that the observations in that area 
are 1.645 standard deviations away from the mean. Consider the following statistical 
data for a government bond, calculated using one year’s historical observations. 

Nominal:  £10 million 
Price:  £100 
Average return:  7.35% 
Standard deviation: 1.99% 

The VaR at the 95% confidence level is 1.645 x 0.0199 or 0.032736. The portfolio 
has a market value of £10 million, so the VaR of the portfolio is 0.032736 x 
10,000,000 or £327,360. So this figure is the maximum loss the portfolio may sustain 
over one year for 95% of the time. 
 
We may extend this analysis to a two-stock portfolio. In a two-asset portfolio, we 
stated at (1) that there is a relationship that enables us to calculate the volatility of a 
two-asset portfolio; this expression is used to calculate the VaR, and is shown at (4): 
 

2 2 2 2
1 1 2 2 1 2 1 2 122port ,Var w w w ws s s s r= + +   (4) 

where 

w1 is the weighting of the first asset 
w2 is the weighting of the second asset 
1s  is the standard deviation or volatility of the first asset 
2s  is the standard deviation or volatility of the second asset 
12,r  is the correlation coefficient between the two assets. 

In a two-asset portfolio the undiversified VaR is the weighted average of the 
individual standard deviations; the diversified VaR, which takes into account the 
correlation between the assets, is the square root of the variance of the portfolio. In 
practice banks will calculate both diversified and undiversified VaR. The diversified 
VaR measure is used to set trading limits, while the larger undiversified VaR measure 
is used to gauge an idea of the bank’s risk exposure in the event of a significant 
correction or market crash. This is because in a crash situation, liquidity dries up as 
market participants all attempt to sell off their assets. This means that the correlation 
relationship between assets cease to have any impact on a book, as all assets move in 
the same direction. Under this scenario then, it is more logical to use an undiversified 
VaR measure. 
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Although the description given here is very simple, nevertheless it explains what is 
the essence of the VaR measure; VaR is essentially the calculation of the standard 
deviation of a portfolio, which is the used as an indicator of the volatility of that 
portfolio. A portfolio exhibiting high volatility will have a high VaR number. An 
observer may then conclude that the portfolio has a high probability of making losses. 
Risk managers and traders may use the VaR measure to help them to allocate capital 
to more efficient sectors of the bank, as return on capital can now be measured in 
terms of return on risk capital. Regulators may use the VaR number as a guide to the 
capital adequacy levels that they feel the bank requires. 

 
Further illustration of variance-covariance VaR 
Consider the following hypothetical portfolio, invested in two assets, as shown in 
figure 1. The standard deviation of each asset has been calculated on historical 
observation of asset returns. Note that returns are returns of asset prices, rather than 
the prices themselves; they are calculated from the actual prices by taking the ratio of 
closing prices. The returns are then calculated as the logarithm of the price relatives. 
The mean and standard deviation of the returns are then calculated using standard 
statistical formulae. This would then give the standard deviation of daily price 
relatives, which is converted to an annual figure by multiplying it by the square root 
of the number of days in a year, usually taken to be 250. 
 
 
 

 
Assets Bond 1 Bond 2   
Standard deviation 11.83% 17.65%   
Portfolio weighting 60% 40%   
Correlation 
coefficient   0.647 
Portfolio value   £10,000,000 
Variance   0.016506998 
Standard deviation   12.848% 
95% c.i. standard 
deviations   1.644853 
Value-at-Risk   0.211349136 
Value-at-Risk £   £2,113,491 

Figure 1: Two-asset portfolio VaR. 
 
The standard equation (shown as (4)) is used to calculate the variance of the portfolio, 
using the individual asset standard deviations and the asset weightings; the VaR of the 
book is the square root of the variance. Multiplying this figure by the current value of 
the portfolio gives us the portfolio VaR, which is £2,113,491.  
 
The RiskMetrics VaR methodology uses matrices to obtain the same results that we 
have shown here. This is because once a portfolio starts to contain many assets, the 
method we described above becomes unwieldy. Matrices allow us to calculate VaR 
for a portfolio containing many hundreds of assets, which would require assessment 
of the volatility of each asset and correlations of each asset to all the others in the 
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portfolio. We can demonstrate how the parametric methodology uses variance and 
correlation matrices to calculate the variance, and hence standard deviation, of a 
portfolio. The matrices for the example in Figure 1 are shown in Choudhry (2001). 
 
 
The variance-covariance method captures the diversification benefits of a multi-
product portfolio because the correlation coefficient matrix used in the calculation. 
For instance if the two bonds in our hypothetical portfolio had a negative correlation 
the VaR number produced would be lower. To apply it, a bank would require data on 
volatility and correlation for the assets in its portfolio. This data is actually available 
from the RiskMetrics website (and other sources), so a bank does not necessarily need 
its own data. It may wish to use its own datasets however, should it have them, to 
tailor the application to its own use. The advantages of the variance-covariance 
methodology are that: 
 
■ it is simple to apply, and fairly straightforward to explain; 
■ datasets for its use are immediately available. 
 
The drawbacks of the variance-covariance are that it assumes stable correlations and 
measures only linear risk; it also places excessive reliance on the normal distribution, 
and returns in the market are widely believed to have “fatter tails” than a true to 
normal distribution. This phenomenon is known as leptokutosis, that is, the non-
normal distribution of outcomes. Another disadvantage is that the process requires 
mapping. To construct a weighting portfolio for the RiskMetrics tool, cash flows from 
financial instruments are mapped into precise maturity points, known as grid points. 
We will review this later in the chapter, however in most cases assets do not fit into 
neat grid points, and complex instruments cannot be broken down accurately into cash 
flows. The mapping process makes assumptions that frequently do not hold in 
practice. 
 
Nevertheless the variance-covariance method is still popular in the market, and is 
frequently the first VaR method installed at a bank. 
 
 

*  *  * 
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